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PREFACE

The need for power system dynamic analysis has grown significantly in
recent years. This is due largely to the desire to utilize transmission networks
for more flexible interchange transactions. While dynamics and stability
have been studied for years in a long-term planning and design environment,
there is a recognized need to perform this analysis in a weekly or even daily
operation environment. This book is devoted to dynamic modeling and
simulation as it relates to such a need, combining theoretical as well as
practical information for use as a text for formal instruction or for reference
by working engineers.

As a text for formal instruction, this book assumes a background in
electromechanics, machines, and power system analysis. As such, the text
would normally be used in a graduate course in electrical engineering. It has
been designed for use in a one-semester (fifteen-week), three-hour course.
The notation follows that of most traditional machine and power system
analysis books and attempts to follow the industry standards so that a tran-
sition to more detail and practical application is easy.

The text is divided into two basic parts. Chapters 1 to 6 give an in-
troduction to electromagnetic transient analysis and a systematic derivation
of synchronous machine dynamic models together with speed and voltage
control subsystems. They include a rigorous explanation of model origins,
development, and simplification. Particular emphasis is given to the con-
cept of reduced-order modeling using integral manifolds as a firm basis for
understanding the derivations and limitations of lower-order dynamic mod-
els. An appendix on integral manifolds gives a mathematical introduction
to this technique of model reduction. Chapters 6 to 9 utilize these dynamic
models for simulation and stability analysis. Particular care is given to the
calculation of initial conditions and the alternative computational methods
for simulation. Small-signal stability analysis is presented in a sequential

xi



xii PREFACE

manner, concluding with the design of power system stabilizers. Transient
stability analysis is formulated using energy function methods with an em-
phasis on the essentials of the potential energy boundary surface and the
controlling unstable equilibrium point approaches.

The book does not claim to be a complete collection of all models and
simulation techniques, but seeks to provide a basic understanding of power
system dynamics. While many more detailed and accurate models exist
in the literature, a major goal of this book is to explain how individual
component models are interfaced for a system study. Our objective is to
provide a firm theoretical foundation for power system dynamic analysis to
serve as a starting point for deeper exploration of complex phenomena and
applications in electric power engineering.

We have so many people to acknowledge for their assistance in our careers
and lives that we will limit our list to six people who have had a direct impact
on the University of Illinois power program and the preparation of this book:
Stan Helm, for his devotion to the power area of electrical engineering for over
sixty years; George Swenson, for his leadership in strengthening the power
area in the department; Mac VanValkenburg, for his fatherly wisdom and
guidance; David Grainger, for his financial support of the power program;
Petar Kokotovic, for his inspiration and energetic discussions; and Karen
Chitwood, for preparing the manuscript.

Throughout our many years of collaboration at the University of Illinois,
we have strived to maintain a healthy balance between education and re-
search. We thank the University administration and the funding support of
the National Science Foundation and the Grainger Foundation for making
this possible.

Peter W. Sauer and M. A. Pai
Urbana, Illinois



Chapter 1

INTRODUCTION

1.1 Background

Power systems have evolved from the original central generating station con-
cept to a modern highly interconnected system with improved technologies
affecting each part of the system separately. The techniques for analysis of
power systems have been affected most drastically by the maturity of digi-
tal computing. Compared to other disciplines within electrical engineering,
the foundations of the analysis are often hidden in assumptions and meth-
ods that have resulted from years of experience and cleverness. On the one
hand, we have a host of techniques and models mixed with the art of power
engineering and, at the other extreme, we have sophisticated control systems
requiring rigorous system theory. It is necessary to strike a balance between
these two extremes so that theoretically sound engineering solutions can be
obtained. The purpose of this book is to seek such a middle ground in the
area of dynamic analysis. The challenge of modeling and simulation lies in
the need to capture (with minimal size and complexity) the “phenomena of
interest.” These phenomena must be understood before effective simulation
can be performed.

The subject of power system dynamics and stability is clearly an ex-
tremely broad topic with a long history and volumes of published literature.
There are many ways to divide and categorize this subject for both education
and research. While a substantial amount of information about the dynamic
behavior of power systems can be gained through experience working with
and testing individual pieces of equipment, the complex problems and oper-
ating practices of large interconnected systems can be better understood if
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this experience is coupled with a mathematical model. Scaled-model systems
such as transient network analyzers have a value in providing a physical feel-
ing for the dynamic response of power systems, but they are limited to small
sizes and are not flexible enough to accommodate complex issues. While
analog simulation techniques have a place in the study of system dynamics,
capability and flexibility have made digital simulation the primary method
for analysis.

There are several main divisions in the study of power system dynam-
ics and stability [1]. F. P. deMello classified dynamic processes into three
categories:

1. Electrical machine and system dynamics
2. System governing and generation control

3. Prime-mover energy supply dynamics and control

In the same reference, C. Concordia and R. P. Schulz classify dynamic studies
according to four concepts:

1. The time of the system condition: past, present, or future
2. The time range of the study: microsecond through hourly response
3. The nature of the system under study: new station, new line, etc.

4. The technical scope of the study: fault analysis, load shedding, sub-
synchronous resonance, etc.

All of these classifications share a common thread: They emphasize that
the system is not in steady state and that many models for various com-
ponents must be used in varying degrees of detail to allow efficient and
practical analysis. The first half of this book is thus devoted to the subject
of modeling, and the second half is devoted to the use of interconnected
models for common dynamic studies. Neither subject receives an exhaustive
treatment; rather, fundamental concepts are presented as a foundation for
probing deeper into the vast number of important and interesting dynamic
phenomena in power systems.

1.2 Physical Structures

The major components of a power system can be represented in a block-
diagram format, as shown in Figure 1.1. While this block diagram rep-
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Figure 1.1: System dynamic structure

resentation does not show all of the complex dynamic interaction between
components and their controls, it serves to broadly describe the dynamic
structures involved. Historically, there has been a major division into the
mechanical and electrical subsystems as shown. This division is not absolute,
however, since the electrical side clearly contains components with mechan-
ical dynamics (tap-changing-under-load (TCUL) transformers, motor loads,
etc.) and the mechanical side clearly contains components with electrical dy-
namics (auxiliary motor drives, process controls, etc.). Furthermore, both
sides are coupled through the monitoring and control functions of the energy
control center.

1.3 Time-Scale Structures

Perhaps the most important classification of dynamic phenomena is their
natural time range of response. A typical classification is shown in Fig-
ure 1.2. A similar concept is presented in [6]. This time-range classification
is important because of its impact on component modeling. It should be
intuitively obvious that it is not necessary to solve the complex transmission
line wave equations to investigate the impact of a change in boiler control
set points. This brings to mind a statement made earlier that “the system
is not in steady state.” Evidently, depending on the nature of the dynamic
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Figure 1.2: Time ranges of dynamic phenomena

disturbance, portions of the power system can be considered in “quasi-steady
state.” This rather ambiguous term will be explained fully in the context of
time-scale modeling [2].

1.4 Political Structures

The dynamic structure and time-range classifications of dynamic phenomena
illustrate the potential complexity of even small or moderate-sized problems.
The problems of power system dynamics and stability are compounded im-
mensely by the current size of interconnected systems. A general system
structure is shown in Figure 1.3. While this structure is not necessarily com-
mon to interconnected systems throughout the world, it represents a typical
North American system and serves to illustrate the concept of a “large-scale
system.” If we speculate about the possible size of a single interconnected
system containing nine coordinating councils, four pools per coordinating
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Figure 1.3: System organizational structure

council, six companies per pool, and ten generators per company, the total
possible number of generating stations can exceed 2000. The bulk power
transmission network (138-765 kV) then typically consists of over 10,000
buses. Indeed, the current demand in the nine coordinating councils within
the North American Electric Reliability Council (NERC) exceeds 500,000
MW [3]. At an average 250 MW per generator, this roughly confirms the
estimate of over 2000 generators in the interconnected North American grid.

Dynamic studies are routinely performed on systems ranging in size from
the smallest company to the largest coordinating council. These are made
at both the planning/design and operating stages. These studies provide
information about local capabilities as well as regional power interchange
capabilities. In view of the potential size, dynamic studies must be capa-
ble of sufficiently accurate representation without prohibitive computational
cost. The nature of system engineering problems inherent in such a complex
task was emphasized in two benchmark reports by the U. S. Department
of Energy (DOE) and the Electric Power Research Institute (EPRI) [4, 5].
These reports resulted in a meeting of international leaders to identify di-
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rections for the future of this technology. These reports set the stage for
a whole new era of power system planning and operation. The volume of
follow-on research and industry application has been tremendous. Perhaps
the most significant impact of these reports was the stimulation of new ideas
that grew into student interest and eventual manpower.

1.5 The Phenomena of Interest

The dynamic performance of power systems is important to both the system
organizations, from an economic viewpoint, and society in general, from a
reliability viewpoint. The analysis of power system dynamics and stability
is increasing daily in terms of number and frequency of studies, as well as
in complexity and size. Dynamic phenomena have been discussed according
to basic function, time-scale properties, and problem size. These three fun-
damental concepts are very closely related and represent the essence of the
challenges of effective simulation of power system dynamics. When properly
performed, modeling and simulation capture the phenomena of interest at
minimal cost. The first step in this process is understanding the phenomena
of interest. Only with a solid physical and mathematical understanding can
the modeling and simulation properly reflect the critical system behavior.
This means that the origin of mathematical models must be understood, and
their purpose must be well defined. Once this is accomplished, the minimal
cost is achieved by model reduction and simplification without significant
loss in accuracy.



Chapter 2

ELECTROMAGNETIC
TRANSIENTS

2.1 The Fastest Transients

In the time-scale classification of power system dynamics, the fastest tran-
sients are generally considered to be those associated with lightning propaga-
tion and switching surges. Since this text is oriented toward system analysis
rather than component design, these transients are discussed in the context
of their propagation into other areas of an interconnected system. While
quantities such as conductor temperature, motion, and chemical reaction are
important aspects of such high-speed transients, we focus mainly on a circuit
view, where voltage and current are of primary importance. While the the-
ories of insulation breakdown, arcing, and lightning propagation rarely lend
themselves to incorporation into standard circuit analysis [7], some simula-
tion software does include a portion of these transients [8, 9]. From a system
viewpoint, the transmission line is the main component that provides the
interconnection to form large complex models. While the electromagnetic
transients programs (EMTP) described in [8] and [9] are unique for their
treatment of switching phenomena of value to designers, they include the
capability to study the propagation of transients through transmission lines.
This feature makes the EMTP program a system analyst’s tool as well as
a designer’s tool. The transmission line models and basic network solution
methods used in these programs are discussed in the following sections.

7
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2.2 Transmission Line Models

Models for transmission lines for use in network analysis are usually cat-
egorized by line lengths (long, medium, short) [10]-[12]. This line length
concept is interesting, and presents a major challenge in the systematic for-
mulation of line models for dynamic analysis. For example, most students
and engineers have been introduced to the argument that shunt capacitance
need not be included in short-line models because it has a negligible effect
on “the accuracy.” Thus, a short line can be modeled using only series re-
sistance and inductance, resulting in a single (for a single line) differential
equation in the current state variable. With capacitance, there would also
be a differential equation involving the voltage state variable.

Reducing a model from two or three differential equations to only one is
a process that has to be justified mathematically as well as physically. As
will be shown, the “long-line” model involves partial differential equations,
which in some sense represent an infinite number of ordinary differential
equations. The reduction from infinity to one is, indeed, a major reduction
and deserves further attention.

Since this text deals with dynamics, it is important to be careful with
familiar models and concepts. Lumped-parameter models are normally valid
for transient analysis unless they are the result of a reduction technique such
as Thevenin equivalencing. Investigation of the various traditional transmis-
sion line models illustrates this point very well. The traditional derivation
of the “long-line” model begins with the construction of an infinitesimal
segment of length Az in Figure 2.1. This length is assumed to be small

Vi (&N L 7
X AT
N0 A A
N A T

t e 1S PRy
aunca irajeciory

_____ Post Fault Trajectory

Figure 2.1: Transmission line segment

enough that magnetic and electric field effects can be considered separately,
resulting in per-unit length line parameters R’, L', G’, C’. These distributed
parameters have the units of ohms/mi, henries/mi, etc., and are calculated
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from the line configuration. This incremental lumped-parameter model is, in
itself, an approximation of the exact interaction of the electric and magnetic
fields. The hope, of course, is that as the incremental segment approaches
zero length, the resulting model gives a good approximation of Maxwell’s
equations. For certain special cases, it can be shown that such an approach
is indeed valid ([13], pp. 393-397).

The line has voltages and currents at its sending end (k) and receiving
end (m). The voltage and current anywhere along the line are simply

v = o(z,t) (2.1)

i = i(z,t) (2.2)
so that

U = v(o,t) (2.3)

im = i(o,1) (2.4)

v = v(d,t) (2.5)

iy = 1i(d,t) (2.6)

where d is the line length. The dynamic equation for the voltage drop across
the infinitesimal segment is
/ r o O
Av = RAzi+L Awa—i (2.7)

and the current through the shunt is

Ai = G'Az(v+ Av) + C'A:c%(v + Av). (2.8)
Substituting (2.7) into (2.8),
. ! / I A s a0t L
Ai = GAzv+GAx RAacz—i—LAxE —i—CAxa
i 0%
/ ALYt /
+C'Az |R Awat +L Ax(‘)tz} . (2.9)
Dividing by A,
Av ,01
N S P 81’] v
" Gv+G [RA:CZ-FLAwat +C T
di 9%
! / /
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Now, the original assumption that the magnetic and electric fields may be
analyzed separately to obtain the distributed parameters has more credibility
when the length under consideration is zero. Thus, the final step is to
evaluate (2.10) and (2.11) in the limit as Az approaches zero, which gives

Av ov 01

. =Y — hid — /. Ihdd
Alglggo Az ox Riv L ot (2.12)
A9, o
A e T e T Gt (2.13)

Equations (2.12) and (2.13) are the final distributed-parameter models of a
lossy transmission line.

There are two special cases when these partial differential equations have
very nice known solutions. The first is the special case of no shunt ele-
ments (C' = G’ = 0). From (2.13), the line current is independent of z so
that (2.12) simplifies to

v(z,t) = wv(o,t)+ Rxi+ L'm% (2.14)
which has a simple series lumped R-L circuit representation. This special
case essentially neglects all electric field effects.

The second special case is the lossless line (R’ = G’ = 0), which has the
general solution [13, 14]

i(x,t) = —filz—uvpt) — falz + vpt) (2.15)
v(x,t) = zofi(z —vpt) — zefo(z + vpt) (2.16)

where fi and fy are unknown functions that depend on the boundary con-
ditions, and the phase velocity and the characteristic impedance

1
vy, = NiTTed ze =/ L'/C". (2.17)

If only the terminal response (vg,ig,Vm,im) is of interest, the following
method, often referred to as Bergeron’s method, has a significant value in
practical implementations. The receiving end current is

im(t) = i(o,t) = —fi(—vpt) — fa(vpt). (2.18)
Now, fi(—vpt) can be expressed as a function of v(o, t) and fa(vpt) from (2.16)
to obtain

in(t) = —~v(0,t) = 2f2(t) (2.19)

= ——Um(t) — QfQ(th)- (2'20)



2.2. TRANSMISSION LINE MODELS 11

To determine fa(vpt), it is necessary to evaluate the sending end current at
time d/v, seconds before ¢ as

ik (t— ;) = —fl(d—l/pt-l-d) —f2(d+th—d). (2.21)
p

Using (2.16) at x = d and at time d/v,, before t,

Vg <t — ;) = z.fi(d—vpt +d) — zcfa(d + vpt — d) (2.22)
p
so that (2.21) can be evaluated as

d d
ik <t - V_p> = —Zic?}k <t — V_p> — 2f2(th). (2.23)

This solves for fa(vpt) to obtain the expression for the current i, (t):

() = —Lo(t) s <t—i>

Ze Vp
1 d

g (t - —) . (2.24)
Ze Vp

This expression has a circuit model as shown in Figure 2.2, where

Im

| ]

+

® f -

Figure 2.2: Transmission line models!receiving end

I, = 1 <t — i) + i?}k <t — i) . (2.25)
Vp Ze Vp

A similar derivation (see Problem 2.1) can be made to determine the sending-
end model shown in Figure 2.3, where
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vk é Z Cv) I

Figure 2.3: Transmission line models!sending end

L = i <t _ i) I <t - i) . (2.26)
Vp Ze Vp

These circuit models are illustrated with other components in the next sec-
tion.

Before leaving this topic, we consider the special case in which the volt-
ages and currents are sinusoidal functions of the form

v(z,t) = V(z)cos(wst+ 6(x)) (2.27)
i(z,t) = I(z)cos(wst+ ¢(z)) (2.28)

where wg is a constant. Substitution of these functions into the partial
differential equations yields the model of Figure 2.4, with phasors [10]

V() = %V(x)l@v(m) (2.29)
- 1
I@) = —51@)/0) (2.30)
where
7 = Rd+jwsld,
Y = G+ jwd,
7y

There is always a great temptation to convert Figure 2.4 into a lumped-
parameter time-domain R— L — C circuit for transient analysis. While such a
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I = I
—e 7 Sinhvd o
vd

][5 )
Vi E h_2 gtanh_Z T/m
(%) (%)

2 2
s °

Figure 2.4: PI lumped-parameter circuit for sinusoidal voltages/currents

circuit would clearly be without mathematical justification, it would be some
approximation of the more exact partial differential equation representation.
The accuracy of such an approximation would depend on the phenomena of
interest and on the relative sizes of the line parameters. In later chapters,
we will discuss the concept of “network transients” in the context of fast and
slow dynamics.

2.3 Solution Methods

Since most power system models contain nonlinearities, transient analysis
usually involves some form of numerical integration. Such numerical meth-
ods are well documented for general networks and for power systems [15]—
[19]. The trapezoidal rule is a common method used in EMTP and other
transient analysis programs. For a dynamic system of the form

W= jn (2.32)

the trapezoidal rule approximates the change of state y over a change of time
At as

y(ti + At) ~ y(ti) + %[f(y(ti + At), b + At) + f(y(ti), t:)]. (2.33)

This is an implicit integration scheme, since y(t; + At) appears on the right-
hand side of (2.33). To illustrate the method, consider the pure inductive
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branch of Figure 2.5. The state representation is

di 1 . .
Wl =i (2.34)

Figure 2.5: Pure linear inductive branch

This approximation can be written as the circuit constraint of Figure 2.6.
The circuit is linear for given values of i(¢;), v(t;), and At. A similar circuit

i (f; + AY)
° |

. At
v+ AD gL CD i (1) +v(t) 57

[\

Figure 2.6: Circuit representation of trapezoidal rule (linear L)

can be constructed for a pure linear capacitor (see Problem 2.2). Since these
are linear elements, there is really no need to employ such an approximation,
but recall the lossless-line circuit representation of Figures 2.2 and 2.3. The
combination of the Bergeron lossless-line model and the trapezoidal rule for
lumped parameters is appealing. There are two difficulties. First, it may
be necessary to consider transmission line losses. Second, the lossless-line
terminal constraints require knowledge of voltages and currents at a previous
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time (t — %), which may not coincide with a multiple of the integration step
size At. The first problem is usually overcome by simply lumping a series
or shunt resistance at either end of the transmission line terminal model. It
is common to break the line into several segments, each using the circuits of
Figures 2.2 and 2.3 together with a corresponding fraction of the line losses.
The second problem is usually overcome either by rounding off the time d/v,
to the nearest multiple of At, or by linear interpolation over one time step
At (see discussion published with [14]). This is illustrated in the following
example.

Example 2.1

Consider a single-phase lossless transmission line connected to an R— L load,
as shown in Figure 2.7:

t=0.0001 sec i1 i
—/q
+ +
L’'=1.5%10-3 H/mi 025 H
+
s <—> i C'=002x106 F/mi V2
d =100 mi 400 Q

Figure 2.7: Single lossless line and R-L load diagram

b 230,000v/2
’ V3
Find 41,49, and wo if the switch is closed at t = 0.0001 sec using the

trapezoidal rule with a time step At = 0.0001 sec. Initial conditions are
’il(O) = iQ(O) = Ul(O) = UQ(O) =0.

cos(2m60t).

Solution:

For the parameters given,

d
= 5000 ohm, = 0.00055 sec, v, = 182,574 mi/sec.
P

2L
. = 274 ohm, —
Z 74 ohm A
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The circuit connection when the switch is closed is found using ¢ = ¢;+0.0001
as shown in Figure 2.8

i1 (t; + 0.0001)
>

+

i (1; — 0.00045)
v, (& +0.0001) (j)w (174 0.0005 - ¢
3 (1 ~0.00045)

- 274

i (t; +0.0001)

+
i1 (¢; —0.00045)
274 Q 400 Q
v1 (i —0.00045) v (1 + 0.0001) + .
M 5000 Sus 1+ 0.0001Y) 2 (1) + L2
v ! 5000

Q

Figure 2.8: Single line and R-L load circuit at t = ¢; + 0.0001

For t; = 0 (¢t = 0.0001 sec)

From the initial conditions,

Il
o o o o o o

=
)
|
[en)
o
o
o
=~
[@)
S e e N N N N

— 187,661 V.

The circuit to be solved at ¢ = 0.0001 sec is shown in Figure 2.9. Solving
the circuits gives

i1(0.0001) = 685 A
01(0.0001) = 187,661V
i2(0.0001) = 0
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i1 (0.0001)
g
187,661 V w1 (0.0001) 2740 04
> (0.0001)
" -
274 Q
0A v2 (0.0001)

5000 ﬁ 3

Figure 2.9: Single line and R — L load circuit at ¢ = 0.0001 sec

12(0.0001) = 0
05(0.0001) = 0.

The sending-end current has changed instantaneously from zero to 685 A as
the switch is closed.

For t; = 0.0001 (¢ = 0.0002 sec)

From the initial conditions and the solution at time ¢ = 0.0001 sec,

i1(—0.00035) = 0
v1(—0.00035) = 0
i2(—0.00035) = 0
v2(—0.00035) = 0
i2(0.0001) = 0
0v3(0.0001) = 0
05(0.0002) = 187,261 V.

The circuit for this time is the same as before, except that the source has
changed. Solving the circuit gives

i1(0.0002) = 683 A
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v1(0.0002) = 187,261V
i2(0.0002) = 0
12(0.0002) = 0
v3(0.0002) = 0.

This will continue until the traveling wave reaches the receiving end at t; =
0.00055 sec. Since we are using a time step of 0.0001 sec, it will first appear
at t; = 0.0006 sec.

For t; = 0.0006 (¢ = 0.0007 sec)

Need:

i1(0.00015), v1(0.00015), i5(0.00015),
12(0.00015), i2(0.0006), v5(0.0006), v,(0.0007)

There is now a problem, since 1, i3, and vy are not known at ¢ = 0.00015.
The voltage v1(0.00015) can be found exactly, since it is equal to the source
vs. The other “sources” in the circuits must be approximated. There are
at least two approximations that can be used. The first approximation is to
use

i1(0.00015) ~ i1 (0.0002) = 683 A.

The second approximation uses linear interpolation as

0.00015 — 0.0001
11(0.0002) — 1(0.0001
0.0002 — 0.0001 ¢ ) —al )

— 685+ 0.5 x (683 — 685)
= 684 A.

i1(0.00015) = 41(0.0001) +

Using this approximation for i1(0.00015), the circuits to be solved at t; =
0.0006 (t = 0.0007 sec) are shown in Figure 2.10. Solving these circuits,

i1(0.0007) = 662 A
v1(0.0007) = 181,293V
i2(0.0007) = 66 A
12(0.0007) 356,731 V.



2.3. SOLUTION METHODS 19

i1 (0.0007)
.-
+ >
181,293 V C_) v (0.0007) ¥ 2740 04
i> (0.0007)
- -
684 A
187.494 (D 3 2me
+20 77T A
o 2 (0.0007)
5000
1368 A

Figure 2.10: Single line and R — L load at ¢ = 0.0007 sec

The traveling wave has reached the receiving end and has resulted in nearly
a doubling of voltage, because the receiving end is initially nearly an open
circuit. The analysis continues with linear interpolation as needed. When
a study contains only one line (like this example), the interface problem
between At and d/v), can be avoided by choosing At to be an integer fraction
of d/vy:

1d
At = ——.
Ny,
Typical values of N range between 5 and 10,000. O

The unique feature of the combination of Bergeron circuits with trape-
zoidal rule circuits is the heart of most EMTP programs. This enables
transmission line plus load transients to be solved using simple “dc¢” circuits.
Most EMTP programs contain many other features, including three-phase
representations and other devices. Its use is normally limited to small-sized
systems in which the very fast transients of switching are the phenomena of
interest.

The purpose of this chapter was to present the basic concepts for dealing
with the fastest transients from a systems viewpoint. In most studies, these
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dynamics are approximated further as attention shifts to electromechanical
dynamics and subsystems with slower response times.

2.4 Problems

2.1 Starting with (2.15) and (2.16), derive the circuit representation of
Figure 2.3 for the sending-end terminals of a lossless transmission line.

2.2 Given the continuous time-domain circuit shown: use the trapezoidal

i

rule approximation to find an algebraic “dc” circuit representation of
the relationship between v(t; + At) and i(¢; + At).

2.3 Given the sinusoidal source and de-energized lossless transmission line
shown: draw the “Bergeron” algebraic “dc¢” circuit and find vy, ip, s

t:ii
. 6VP i
Ls 10Q L
— ———
+

vy L/ =2.18 x 10-3 H/mi

C’=0.0136 x 106 F/mi VL § 300

B d =225 mi 3

vy = 188,000 cos (2160 1) volts

for 0 <t < 0.04 sec using a time step of At = %%. Plot vy,.

2.4 Given the sinusoidal source and de-energized lossless transmission line
shown: use Bergeron’s method with linear interpolation to find v and
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t=0.0001 sec
. 10 Q2
l
—] F——e@
v L’ =15 % 10-3 H/mi *
C’ =0.02 x 10~ F/mi v
B d =100 mi _
Vs :M cos (2m60 1) volts
V3

1 using a time step of At = 0.0001 sec. Solve for a total time of 0.02
sec. Plot the results.

2.5 Repeat Problem 2.4 using the lumped-parameter model shown: using

t=0.0001 sec
L'd

c'd I I Cd +
1%

T T

the trapezoidal rule approximation with a time step of 1076 sec.

10 Q

Vs

2.6 Euler’s forward integration scheme solves ordinary differential equations
(dx/dt = f(z)) using a time step h as

x(ti+h) = xz(t;) + (dz/dt)h

where dx/dt is evaluated at time ¢;. Use this solution scheme to derive
an algebraic “dc” circuit to solve for the current through a lumped-

parameter R-L series circuit at each time step for any given applied
voltage.
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Chapter 3

SYNCHRONOUS
MACHINE MODELING

3.1 Conventions and Notation

There is probably more literature on synchronous machines than on any
other device in electrical engineering. Unfortunately, this vast amount of
material often makes the subject complex and confusing. In addition, most
of the work on reduced-order modeling is based primarily on physical intu-
ition, practical experience, and years of experimentation. The evolution of
dynamic analysis has caused some problems in notation as it relates to com-
mon symbols that eventually require data from manufacturers. This text
uses the conventions and notations of [20], which essentially follows those
of many publications on synchronous machines [21]-[27]. When the nota-
tion differs significantly from these and other conventions, notes are given
to clarify any possible misunderstanding. The topics of time constants and
machine inductances are examples of such notations. While some documents
define time constants and inductances in terms of physical experiments, this
text uses fixed expressions in terms of model parameters. Since there can
be a considerable difference in numerical values, it is important to always
verify the meaning of symbols when obtaining data. This is most effectively
done by comparing the model in which a parameter appears with the test
or calculation that was performed to produce the data. In many cases, the
parameter values are provided from design data based on the same expres-
sions given in this text. In some cases, the parameter values are provided
from standard tests that may not precisely relate to the expressions given in

23
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this text. In this case, there is normally a procedure to convert the values
into consistent data [20].

The original Park’s transformation is used together with the “x,;” per-
unit system [28, 29]. This results in a reciprocal transformed per-unit model
where 1.0 per-unit excitation results in rated open-circuit voltage for a linear
magnetic system. Even with this standard choice, there is enough freedom
in scaling to produce various model structures that appear different [30].
These issues are discussed further in later sections.

In this chapter, the machine transformation and scaling were separated
from the topic of the magnetic circuit representation. This is done so that
it is clear which equations and parameters are independent of the magnetic
circuit representation.

3.2 Three-Damper-Winding Model

This section presents the basic dynamic equations for a balanced, symmetri-
cal, three-phase synchronous machine with a field winding and three damper
windings on the rotor. The simplified schematic of Figure 3.1 shows the coil

Figure 3.1: Synchronous machine schematic

orientation, assumed polarities, and rotor position reference. The stator
windings have axes 120 electrical degrees apart and are assumed to have an
equivalent sinusoidal distribution [20]. While a two-pole machine is shown,
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all equations will be written for a P-pole machine with w = gwshaft ex-
pressed in electrical radians per second. The circles with dots and x’s indi-
cate the windings. Current flow is assumed to be into the “z” and out of
the “dot.” The voltage polarity of the coils is assumed to be plus to minus
from the “x” to the “dots.”

This notation uses “motor” current notation for all the windings at this
point. The transformed stator currents will be changed to “generator” cur-
rent notation at the point of per-unit scaling. The fundamental Kirchhoff’s,
Faraday’s and Newton’s laws give

Vg = 1aqTs + % (3.1)

vy = prs+ % (3.2)

Ve = dcTs+ % (3.3)

Urd = ifarsa+ % (3:4)

Vid = 11dT1d T % (3.5)

Vg = f1gT19 T % (36)

Vg = d2gT2g Tt % (3:7)
desd%ft _ %w (3.8)
%C;_j = T —T.— Ty (3.9)

where A is flux linkage, r is winding resistance, J is the inertia constant,
P is the number of magnetic poles per phase, T}, is the mechanical torque
applied to the shaft, —T, is the torque of electrical origin, and T',, is a friction
windage torque. A major modeling challenge is to obtain the relationship
between flux linkage and current. These relationships will be presented in
later sections.
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3.3 Transformations and Scaling

The sinusoidal steady state of balanced symmetrical machines can be trans-
formed to produce constant states. The general form of the transformation

that accomplishes this is Park’s transformation [20],

A . A . A
Vdgo = quovabcy Ydgo = quozabcy )\dqo = quo/\abc

where
Vabe é [Ua'Ub'Uc]ta Labe é [iaibic]ta Aabe é [)\a>\b/\c]t
A AL A
Vdgo = [VaVqol's idgo = [idiqio)’s Adgo = [MargAo)’
and
. P /P 2 (P 2
A2 sin 50ghatt  SIN(FOshare — F)  sin(FOspas +3)
2 P P 2 P 2
Taqo = 3 cos 50ghatt  CoS(50shatt — ) cos(F0shatt + 3)
1 1 1
2 2 2
with the inverse
. p P
sin 5 0gp aft cos 5 0ghaft 1
-1 _ . /P o2 P 2
Tago = | sin(50gnaty — 3) cos(Fbgpag — ) 1
. P 21 P 2
sin(50shaft + 5)  €08(50hatt T~ 5) 1

From (3.1)—(3.9), Kirchhoft’s and Faraday’s laws are

d
% ()‘abc)

Vabe = Tslabe +
which, when transformed using (3.13) and (3.14), are

d (71

% dqo/\dqo)'

Vdgo = rsidqo + quo

After evaluation, the system in dqo coordinates has the forms

dA
Vg = Telg —wAg+ d—td

dA
Vg = Tslg +wAg+ —

dt

(3.10)

(3.11)
(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Vo = rsio+% (3.19)
Ufd = deifd-i-% (3.20)
vy = Tldild“‘% (3.21)
vy = quilq—k% (3.22)
Vg = r2qi2q+% (3.23)
% _ %w (3.24)
J%% = Tp—T,— Ty (3.25)

To derive an expression for T,, it is necessary to look at the overall en-
ergy or power balance for the machine. This is an electromechanical system
that can be divided into an electrical system, a mechanical system, and a
coupling field [31]. In such a system, resistance causes real power losses in
the electrical system, friction causes heat losses in the mechanical system,
and hysteresis causes losses in the coupling field. Energy is stored in induc-
tances in the electrical system, the rotating mass of the mechanical system,
and the magnetic field that couples the two. Any energy that is not lost
or stored must be transferred. In this text we make two assumptions about
this energy balance. First, all energy stored in the electrical system inside
the machine terminals is included in the energy stored in the coupling field.
Second, the coupling field is lossless. The first assumption is arbitrary, and
the second assumption neglects phenomena such as hysteresis (but not sat-
uration). A diagram that shows such a power balance for a single machine
using the above notation is given in Figure 3.2, with input powers for both
the electrical and mechanical systems.

The electrical powers are

P in Vala + Uply + Vel + deifd + vidtiqd + ’Ulqilq + qu’igq (3.26)
elec
Pogt = 7slia+if +1i0) + rfaita + riail + rgitg + ragis,  (3.27)
elec
cdhg o dNy o dXe 0 dApg 0 dNg . dAyg
Ptrans = Za% + Zb% + ZCE + Zfd dt + 11d dt + Zlq i

elec
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g
+iog—— T (3.28)
P
lost 2
elec Ty P ®
P T
in B
elec ;rlzrés =~ T, % ) Tm% (0]
2/ (2 ) X
awy 1/ d(n
dt ( p) Jo
Electrical Coupling Mechanical
System Field System

Figure 3.2: Synchronous machine power balance

The summation of the electrical system is simply Kirchhoff’s plus Fara-
day’s laws, and the summation of the mechanical system is Newton’s second
law. In terms of the transformed variables, since

) . ) 3 . 3 . .
Vala + Uplp + Vele = 5 Vdid + RE + 3ot (3.29)
3 . 3 .
P in = ivdld + §'Uq7/q
elec

+ 3volo + Vralpq + Vigiid + Viglig + V2q4i2g (3.30)

3 . 3 . .
Plost = 57*513 + 57’513 + 37’523
elec
.2 .2 .2 .2
+ Trditq + T1di1q T T1g01g T+ T2qi% (3.31)
Pirans = 979 sdta At
elec
3. d\g  3PdOgnagt .\ . 3. d)\
Zp, 20 4 22 7shalt g Z; 24
TRl ten g Mt Rl
dX, dq dA\14
3ip—— —
+ o 7t +ifa—— at + 114 7t
dMig dXog

+ig— 7t +l9g—— Tt (3.32)
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The power balance equation in the coupling field in these dgo coordinates
gives the time derivative of the energy stored in the coupling field as

AWy 3P , dOgae 3. dhg 3. dN, .. dX
ki A T, | —shalt | 2, Z7d o
dt 59 Aaig = Agta) + a Talig Talig Ty
dhfg  dhg . dhg . dhgg
_Jjae . 3.33
+ifq 7t +Ud— 0t + g a + log—— i ( )

For independent states O, . ¢, Ad, Ag» Aos Afd, A\1d, A1g; A2q the total derivative
of Wy is

AWy OWy dbgat | OWyddg | OWpdN,  OWpdN, | OWy dAgy

dt o At OAg di | 9N, dt | 9N, dt | DA di

OWpdhig  OWsdhy,  OWydhg,

. .34
g dt DNy At Dheg di (3:34)

For this total derivative to be exact [32], the following identities must hold:

ow; 3P , oW 3.
= 22 (Agiy — A T, _ te. .
D pate 2 5 (Aaig = Agia) + B, gl et (3.35)

With appropriate continuity assumptions [33], the coupling field energy can
be obtained from (3.33) as a path integral

3P 3
Wf = W]? —|—/ |:§§()\qu - )\qid) +Tej| deshaft +/§de>\d
3 .
+ / SiadAg + / 3iodo + / iradXpa + / i14d\ 14

—i—/ilqd)\lq —i—/iqu)\gq. (336)

For this integral to be path independent, the partial derivatives of all inte-
grands with respect to other states must be equal [34], i.e
3 Oiqg  0Oigq
2 0\ fd N O0Ag

ete. (3.37)

These constraints can also be obtained from those of (3.35) by taking the
second partials of Wy with respect to states. The assumption that the cou-
pling field is conservative is sufficient to guarantee that these constraints
are satisfied. Nevertheless, these constraints should always be kept in mind
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when deriving the magnetic circuit relationships between flux linkage and
current.

Assuming that these constraints are satisfied, the following arbitrary
path is chosen from the de-energized (WJ? = 0) condition to the energized
condition:

1. Integrate rotor position to some arbitrary 6y ,¢ While all sources are
de-energized. This adds zero to Wy since A4, A4, and T, must be zero.

2. Integrate each source in sequence while maintaining 6
trary position.

shaft at its arbi-

With this chosen path, W; will be the sum of seven integrals for the seven
independent sources A\g, Ay, Aoy Afd, Mg, A1g, A2q- Each integrand is the
respective source current that must be given as a function of the states.
Since this is not done until later sections, we make the following assump-
tion. Assume that the relationships between Ag, Ay, Ao, Ara, A4, A1g, A2g and
idsTqs Lo, L fd, 11d; i1q; 12 are independent of O} . ¢. For this assumption, Wy
will be independent of 6} . ¢ so that, from (3.35),

T, = — (g) (g) (i — Agia)- (3.38)

To complete the dynamic model in the transformed variables, it is desir-
able to define an angle that is constant for constant shaft speed. We define
this angle as follows:

P

1>

0

where w; is a constant normally called rated synchronous speed in electrical
radians per second, giving

— =W — ws. (3.40)

The final unscaled model in the new variables is

g
dt
X,
dt

= —rgiq+ w)\q + Vg (3-41)

—Tslg — WA + Vg (3.42)
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d(;;o = —rg,+ v, (3.43)
d\
Wfd = —deifd + Vgq (3.44)
d\ .
—d;d = —T1dl1d t V14 (3.45)
d\ .
Tq = —Tiqliq T V1iq (3.46)
dA
Doy gt vng (3.47)
dt
% - W w, (3.48)
2 dw 3\ [P
= =1, — )= ig — Agiq) — Trop- A
=% +(3) (5) Qo = i) - 1y (3.49)

It is customary to scale the synchronous machine equations using the tradi-
tional concept of per-unit [28, 29]. This scaling process is presented here as
a change of variables and a change of parameters. We begin by defining new
abc variables as

A Va A Uy A Ve
a — 5 % = ; ch = s
VBaBc VBaBc VBaBc
A _~la A~ A e
— 5 b — 3 c = ;
Ipapc IpaBc Ipapc
A g AN A Ac
Yo = , Uy = y Y= (3.50)
ABABC ABABC ABABC

where Vpapc is a rated RM S line to neutral stator voltage and

Ipapc 2 5737 Apagc = Vpane (3.51)
3VBaBC wB
with Sp equal to the rated three-phase voltamperes and wp equal to rated
speed in electrical radians per second (ws). This scaling also converts the
model to “generator” notation. The new dqo variables are defined as

A U4 A VUq A Vo

V - ) - ) - )
d VBDQ " Vipo °" Vapo
A —ig A —lg A —ip
Id = I, = ) I, = )
Igpg " Igpo ° Igpo
A A A A A A
a2 Tl BTy, 2 (3.52)
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where Vppg is rated peak line to neutral voltage, and

A 2S5p A VBDQ (3.53)

with Sp and wp defined as above, and again the scaling has converted to
generator notation. The new rotor variables are defined as

Vig A Vfd Vi A U1d ] A V1q g A V2q
= Verp' Veip’ T Ve’ T Vpag'
A lifq Al A lig A 12
Ipg 2 = I, 2 da 72
! Iprp’ Ipip’ Ipg ™ I’
A Afd A Ad A Alg A Ay
= , g = y Y19 = y Pog = 3.54
! ABFD AB1D ¢ AB1Q 1 AB2@Q ( )
where the rotor circuit base voltages are
A S A Sp A Sp A Sp
VBrFD = , VBiIpD=+—, VBig=+—", VBg = (3.55)
Iprp Ipip Ipig Ipag
and the rotor circuit base flux linkages are
A VBFD A VBip A VBi A Vi
ABFD = , ABID = . AB1Q = e AB2Q = © (3.56)
WR WB wB

with Sp and wp defined as above. The definitions of the rotor circuit base
currents will be given later, when the flux linkage/current relationships are
presented. In some models, it is convenient to define a scaled per-unit speed
as

1>

dl (3.57)

v
WB

where wp is as defined above.
This completes the scaling of the model variables. The model parameters
are scaled as follows. Define new resistances

A Ts A Tid A Tid
R - 9 R d — } Rld = ’
* " Zppg f ZBFD ZB1D
Ry, & 2 T (3.58)

5 29 —
ZB1Q T Zpag
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where
A VBD A VBFD A VBiD
ZBDQ = Q, ZBFD = , ZBip = ;
Ippo Isrp Ipip
A VB A VB
Zpio & 2L Zpyp & 22 (3.59)
Ipig Ip2g

H 3.60
2 (3.60)
It is also common to define other inertia constants as
2H
= M =2H (3.61)

where the constants H and M’ have the units of seconds, while M has the
units of seconds squared. The shaft torques are scaled by defining

A Ty A Te A wa
Ty =22 T = T == 3.62
M TB ) ELEC TB’ FW TB ( )
where
S
T2 28 (3.63)
LUB?

Using these scaled variables and parameters, the synchronous machine dy-
namic equations at this stage of development with wp = ws are

1 dl/)d w
——— = R, — V. 3.64
w. dt d+ o Vg + Va ( )
L dyp, w
o = Pl etV (3.65)
1 di,
1 — R4V, 3.66
wg dt + ( )
1 dipga
~ Y _Rp.T .
o dt Ryqlyq+ Viq (3.67)
1d
1oy _ —Ryqlia + Vig (3.68)

wg dt
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idwlq
wg dt
idw2q
wg dt

do

dt

2H dw

ws dt

= Tn — (Yalqg — ¥qla)

= _qullq + ‘/iq
= —lagly + Vay

= w— ws

— Trw.

(3.69)
(3.70)

(3.71)

(3.72)

It is important to pause at this point to consider the scaling of variables.
Consider a balanced set of scaled sinusoidal voltages and currents of the

form:

V, V2V, cos (wst + 05)

W \/§Vscos<wt+0 ——)

V. V2V, cos <w t+05+ >

1, V21, cos (wst + ¢bs)

I V21, cos (w t—i—cZ)s——)

1. \/§Iscos< st + ¢s + )
Using the transformation (3.13),

V2V,Vpasc
Vg = st — 6
d ( VeDo Shaft W

V2V V2VsVBaBc
VBDQ
SlIl

Ippg

0
I, — (\ff sIpABC
0.

_¢s

)

shaft wst — 95>

shaft wst — ‘Z)S)

V2I1 V2l Ipapc
Shaft

- Ippg BDQ

)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)
(3.81)

(3.82)

(3.83)

(3.84)
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By the definitions of Veapc, Vapq, IBaBc, and Ippq,

V2ViVeapo v V2ILIgapc
Yo sTBABC _y, YL BABC

I. 3.85
VBDQ Ippg (3:85)

Using the definition of ¢ from (3.39),

Vg = Vi sin (0 — 6
Vy = Vs cos (6 — 0
Iy = I sin (6 —¢s)
I, = 15 cos (6 — o).

These algebraic equations can be written as complex equations

(Va+ Vel = el (3.90)
(Ig 4 jI,)e?C~™2) = [.e%s. (3.91)

These are recognized as the per-unit RM .S phasors of (3.73) and (3.76).

It is also important, at this point, to note that the model of (3.64)—(3.72)
was derived using essentially four general assumptions. These assumptions
are summarized as follows.

1. Stator has three coils in a balanced symmetrical configuration centered
120 electrical degrees apart.

2. Rotor has four coils in a balanced symmetrical configuration located
in pairs 90 electrical degrees apart.

3. The relationship between the flux linkages and currents must reflect a
conservative coupling field.

4. The relationships between the flux linkages and currents must be in-
dependent of 6y} ¢ When expressed in the dgo coordinate system.

The following sections give the flux linkage/current relationships that satisfy
these four assumptions and thus complete the dynamic model.
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3.4 The Linear Magnetic Circuit

This section presents the special case in which the machine flux linkages are
assumed to be linear functions of currents:

Aabe = Lss(eshaft)iabc + Lsr(ashaft)irotor (3'92)
)‘rotor = Lys (eshaft)iabc + er(eshaft)irotor (3-93)
where
. AN A
irotor = lifairditgizg]’s Arotor = AsaAadgrag]’- (3.94)

If space harmonics are neglected, the entries of these inductance matrices
can be written in a form that satisfies assumptions (3) and (4) of the last
section. Reference [20] discusses this formulation and gives the following
standard first approximation of the inductances for a P-pole machine.

Lss(Oshatt) =
L¢s + La — Lpcos POy e —2La — Lpcos(Plgy . — &)
—3La — Lpcos(POgyap — 2) Les + La — Lpcos(Plg, . + 2)
—%LA — Lpcos(Pgy . + %’r) —%LA — Lpcos POy a5

—3La — Lp cos(POgpap; + )
—2La — Lpcos POgpaft (3.95)
Lys+Lys—Lp COS(PHShaft - 2%)

A
LST(GShaft) = Lis(eshaft) =

Lgfqsin gQShaft Lg14sin geshaft
Lsfd Sin(geshaft o 2%) Ls1a Sin(geshaft - 2%)
Lsya Sin(geshaft + %W) Lsid Sin(geshaft + 2?”)

Lis14 cos geshaft Lisaq cos geshaft
Lsigcos(G0ghat — ) Li2g cos(G0gpag — 5) (3.96)
Lsiq Cos(geshaft + 2%) Lisag Cos(geshaft + 2%)
Lygra Lyaa 0 0
Lr(Ogpaft) = buaa a0 ’ (3.97)
0 0 Ligiq Ligog

0 0 Ligaq  Logog
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The rotor self-inductance matrix L., (6}, ,f) is independent of 6} ¢ . Using
the transformation of (3.10),

X = (Les+ Lima)ia + Legaifa + Leigira (3.98)
Afd = gLsfdid + Lygraifa + Lyqiaig (3.99)
Md = gledid + Lygigifa + Liaidiid (3.100)

and
Ag = (Lts + Ling)ig + Laigitg + Lisagizg (3.101)
Ag = ;leqiq + Ligigiig + Li1g2q724 (3.102)
Ayg = gLs2qiq + Ligoqiig + Lagaqt2q (3.103)

and
Ao = Lusio (3.104)

where

Ld 2 g(LA+LB), Limg 2 g(LA—LB). (3.105)

This set of flux linkage/current relationships does reflect a conservative cou-
pling field, since the original matrices of (3.95)-(3.97) are symmetric, and
the partial derivatives of (3.37) are satisfied by (3.98)—(3.104). This can
be easily verified using Cramer’s rule to find entries of the inverses of the
inductance matrices.

In terms of the scaled quantities of the last section,

 ws(Lgs + Lima)(—1alBpqQ) . wsLsfalpalprp
Yy = +
VBDQ VBDOQ

wsLsialialp1p

3.106
Voo (3.106)

Dra ws3 Lsta(—IalBDQ) N wsLtaral fal Brp
/ VBFD VBFD

wsLfaralialp1p
VBFD

(3.107)
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ws%led(_IdIBDQ) wstdldIfd[BFD
+
VB1iD VB1iD

Y1q

wsLigralialp1p
VB1iD
WS(LZS + Lmq)(_IqIBDQ) + wsleqlquBlQ
VBDQ VBDQ

wsLSZqI2qIBZQ
VBpQ

ws3 Ls1q(—14IBDQ) + wsL1g1gl14IB1Q

Y = VBi1g VB1g

wsL1q2q12qIB2Q
VB1g

WS%LS%(_L;IBDQ) n wsL1g2¢114IB1Q
VB2q VB20g

1/}2q =

wsLogaqloqI B2
VBog

by = wsLes(—I,1BDQ)
¢ VBDQ

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

Although the values of Iprp, Ipip, IB1Q, IB2 have not yet been spec-
ified, their relationship to their respective voltage bases assures that the
scaled transformed system (3.106)—(3.112) is reciprocal (symmetric induc-
tance matrices). The rotor current bases are chosen at this point to make

as many off-diagonal terms equal as possible. To do this, define

A Lyg A Lpyg
Iprp = —Ippg. Ipip = —Ippg
Lsfd led
A L A L
Ipig = —Ippg, Ipg = —2Ippg
leq L82q
and the following scaled parameters:
Xg é WSLZS p é wsLmd é wsLmq
* Zppg " Zepo' ™ Zppo
A wsLygrq A wsligig A wsLgqialsgq
Xpq = 25 L Xy & 24 Xfqa = —————1% Jnazs]
ZBFD ZB1D ZBrpLs1d

(3.113)

(3.114)

(3.115)

(3.116)
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LigaqL
Xy, & Sde -, 4 L Xigag 2 % (3.117)
52q

It is convenient also to define the scaled leakage reactances of the rotor
windings as

A A

Xopa = Xfa — Xmd, Xong = Xia — Xind (3.118)
A A

Xﬂq = qu - XWQ7 X€2q - X2q - qu- (3119)

Similarly, we also define

X2 Xpo+ Xpnay Xg 2 Xpg 4 Xong (3.120)
A Xyaa A Xig2q

= = == 3.121

de ’ Cq qu ( )

The resulting scaled i — I relationship is

Vg = Xa(—1q) + Xmalra + Xmalia (3.122)
Vg = Xma(—1Ia) + Xralta + ciXmalia (3.123)
Vg = Xmd(—1a) + caXmalya + X1al14 (3.124)
and
Vg = Xg(—1y) + Xongliqg + Xmglog (3.125)
Yig = Xong(—I,) + X1gDrg + cgXmglg (3.126)
Yoy = Xng(—=I) + cgXmqlig + Xoglng (3.127)
and
VYo = Xps(—1Io). (3.128)

While several examples [30] have shown that the terms ¢4 and ¢, are
important in some simulations, it is customary to make the following sim-
plification [20]:

caml, cg~1. (3.129)

This assumption makes all of the off-diagonal entries of the decoupled in-
ductance matrices equal. An alternative way to obtain the same structure
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without the above simplification would require a different choice of scaling
and different definitions of leakage reactances [30]: Using the previously de-
fined parameters and the simplification (3.129), it is common to define the
following parameters [20]

/ 1 XonaX, X2
Xy & Ko+ = Xo + =50 = Xy = 2 (3.130)
Xmd ' Xefa fd fd
, 1 Xng X X2
X0 & Xpg+ 41— = Xps + T = X, - (3131)
qu XZlq 1q 1q
IZAVAN 1
Xg = X+ — T T (3.132)
Xmd ' Xega | X
oA 1
Xg = Xos+ — T T (3.133)
qu XZlq Xqu
r A de
T, = 3.134
do Wstd ( )
rA qu
T =2 3.135
o (3135)
IZVAN 1
Too = 5~ | Xaa+ : (3.136)
Wsitld Xmd " Xefd
oA 1 1
qu == T XZZq + ﬁ (3137)
Ws T2 Xomg " Xeig
and the following variables
A de
E = —iy 3.138
q X1q f ( )
A X
E¢g = —Rmd Via (3.139)
fd
/A X
E; = — qul/qu' (3.140)
1q

Adkins [23] and several earlier references define X ;/ as in (3.131) and T;O

as in (3.135). This practice is based on the convention that single primes
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refer to the so-called “transient” period, while the double primes refer to
the supposedly faster “subtransient” period. Thus, when a single damper
winding is modeled on the rotor, this is interpreted as a “subtransient” effect
and denoted as such with a double prime. Some published models use the
notation of Young [35], which uses an E/, definition that is the same as (3.140)
but with a positive sign. In several publications, the terminology X r4 is used
to define leakage reactance rather than self-reactance. The symbols X .4 and
Xqq are common alternatives for the magnetizing reactances X,,q and X,,,.

The dynamic model can contain at most only seven of the fourteen flux
linkages and currents as independent state variables. The natural form of
the state equations invites the elimination of currents by solving (3.122)—
(3.128). Since the terminal constraints have not yet been specified, it is
unwise to eliminate Iy, I, or I, at this time. Since the terminal constraints
do not affect Iyq, I1gq, I14, I24, these currents can be eliminated from the
dynamic model now. This is done by rearranging (3.122)—(3.128) using the
newly defined variables and parameters to obtain

(X;l/ — XZS)E’ (Xc,l — X;ll)

Vg = —X I+ =2 V1a 3.141
! (X, — Xes) T (X~ Xeg) ! (3.141)
1 ,
Ifq = X—d[Eq + (Xa — Xg)(La — 1a)] (3.142)
X, — X , ,
ha = mwld + (Xg — Xp5)1a — E] (3.143)
d S
and
, 7" . XZS) ) ( . X//
= —-X, I, — - E ! 144
wq q-4q (X/ o ng) d + (X/ st)w2q (3 )
1 ’ !
L, = o [—Ey+ (Xq — X,)(I; — Izg)] (3.145)
Ly = LXq[zp + (X, = Xps)I, + E} (3.146)
e (X, — X221 ¢ s)te T '
and
Yo = —Xuslo. (3.147)

Substitution into (3.64)—(3.72) gives the dynamic model for a linear mag-
netic circuit with the terminal constraints (relationship between Vg, I4, V4,
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I,, V,, I,) not yet specified. Since these terminal constraints are not speci-
fied, it is necessary to keep the three flux linkage/current algebraic equations
involving Iy, I, and I,. In addition, the variables Eyq, T, and Try are
also as yet unspecified. It would be reasonable, if desired at this point, to
make Eyq and T)y constant inputs, and Try equal to zero. We will con-
tinue to carry them along as variables. With these clarifications, the linear
magnetic circuit model is shown in the following boxed set.

1 dipy
wy dt
1 diy
ws dt
1 dip,
ws dt

, dE,

do dt

/

n diprg
Tdo dt
90 dt

i dipag
T,
°dt
dé

dt
2H dw
ws dt

Py

g
Yo

Roly+ wizpq TV (3.148)
w

Rslq — —a+ Vg (3.149)

RsI, +V, (3.150)
, , X/ _ X//

—E,— (Xq— X )[lg — —4——4_

Xy — Xes)Ia — Ep)] + Ega (3.151)

—tpra+ By — (X3 — Xos) Ly (3.152)

(X — X1 X, - X,

_ d+( q q)[q_(X[;_Xés)2(w2q

H(X, — Xes)Iy + Ey)] (3.153)

_w2q - E;l - (X:Z - XZS)Iq (3154)

W — Wy (3.155)

Tn = (Yaly — Ygla) — Trw (3.156)
" (X, — Xps) v (X — X))

—Xgla ; E, + = Vg (3.157
! (Xd - ng) I (Xd - Xés) ' ( )
. (XII _ XZS) , (X/ _ X//)

—X, 1 ] Ey+ ——1 3.158
q-4 (Xq _ Xés) d (Xq — XZS)¢2Q ( )

— Xy, (3.159)
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Although there are time constants that appear on all of the flux linkage
derivatives, the right-hand sides contain flux linkages multiplied by con-
stants. Furthermore, the addition of the terminal constraints could add
more terms when Iy, I;, and I, are eliminated. Thus, the time constants
shown are not true time constants in the traditional sense, where the respec-
tive states appear on the right-hand side multiplied only by - 1. It is also
possible to define a mechanical time constant T as

2H

A
T = 3.160
e (3.160
and a scaled transient speed as
A
wr = Ts(w — ws) (3.161)
to produce the following angle/speed state pair
dd
Tsa = w (3.162)
dwt
TSE = Ty — (WYaly — Yela) — Trw. (3.163)

While this will prove useful later, in the analysis of the time-scale properties
of synchronous machines, the model normally will be used in the form of
(3.148)—(3.159). This concludes the basic dynamic modeling of synchronous
machines if saturation of the magnetic circuit is not considered. The next
section presents a fairly general method for including such nonlinearities in
the flux linkage/current relationships.

3.5 The Nonlinear Magnetic Circuit

In this section, we propose a fairly generalized treatment of nonlinearities
in the magnetic circuit. The generalization is motivated by the multitude of
various representations of saturation that have appeared in the literature.
Virtually all methods proposed to date involve the addition of one or more
nonlinear terms to the model of (3.148)—(3.159). The following treatment
returns to the original abc variables so that any assumptions or added terms
can be traced through the transformation and scaling processes of the last
section. It is clear that, as in the last section, the flux linkage/current
relationships must satisfy assumptions (3) and (4) at the end of Section 3.3 if
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the results here are to be valid for the general model of (3.64)—(3.72). Toward
this end, we propose a flux linkage/current relationship of the following form:

Aabe = Lugs (eshaft )iabc + Lsr(eshaft)irotor

—Sabe(Tabes Arotors eshaft) (3.164)
Arotor = L, (Oshaft)iabe + Lir(Oghaft )irotor
—Srotor (tabe; Avotor: Oshaft) (3.165)

where all quantities are as previously defined, and Sgp. and Spotor satisfy
assumptions (3) and (4) at the end of Section 3.3. The choice of stator
currents and rotor flux linkages for the nonlinearity dependence was made
to allow comparsion with traditional choices of functions. With these two
assumptions, Sgpe and Spotor must be such that when (3.164) and (3.165)
are transformed using (3.10), the following nonlinear flux linkage/current
relationship is obtained

A = (Les+ Ling)ia + Lsgaifa + Lsigita — Sa(idgos Arotor) (3-166)

Apg = gLsfdid + Lyafaifa + Lgaraira — Sfa(idgos Arotor) — (3-167)

A = gLsmid + Lyqiaifa + Ligiaiia — S1d(idgos Arotor)  (3-168)

Aq = (Les+ Ling)iq + Lsiging + Liszqiag — Sq(idgos Arotor) (3-169)

Alg = gleqiq + Ligigirg + Ligagizg — Siq(idgos Arotor) (3.170)

Ayg = gLszqiq + Lig2qirg + Lagagizg — 524 (idgos Arotor) (3.171)

and

Mo = Lusio— Solidgo Aotor): (3.172)

This system includes the possibility of coupling between all of the d, g,
and o subsystems. Saturation functions that satisfy these two assumptions
normally have a balanced symmetrical three-phase dependence on shaft po-
sition.
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In terms of the scaled variables of the last two sections, and using (3.129)
(cag=cq=1),

Vg = Xg(—Iaq) + Xmalpa + Xmalia — 5[(11)(5/1) (3.173)
wfd = de(—fd) + de[fd + Xmalig — S](”il) (Yl) (3.174)

Vg = Xma(—I2) + Xmala + X1alha — S (11) (3.175)

and
Vg = Xg(—1)) + Xiglig + Xmglag — SV (Y1) (3.176)
Vg = Xmg(—1y) + Xighg + Xinglog — Si2 (V1) (3.177)
Vaq = Xm (_Iq) + Xingl1g + Xoglag — Sg};)(yl) (3.178)

and
Yo = Xos(—L) — S (1) (3.179)

where

v, 2 [y Vra V1a I PY1g oq L)' (3.180)

s 2 8,/Aspo, S]gi) 2 Sta/Aprp. SYy 2 Sw/Apip
SiM £ S,/ABpa, SS) £ S14/Ap10. 55(11) = Sa/Amg

S £ 5, /Appo (3.181)

with each S evaluated using Aj40, Arotor Written as a function of Y7. Using
new variables E[’i and E;, and rearranging so that rotor currents can be
eliminated, gives

"

v (X = X)) o (X = X7) )
- X7 “d TR ¢ — 557(Y5)(3.182
Vg ada+ (X~ Xp0) ¢t (Xd—Xzs)Md ¢ (Y2)(3.182)
1 ’ / 2
I = B+ (Xa = Xo)(Ia —Ta) + S5 (¥2)] (3.183)
X/ _ X// , ,
Ly = Al [+ (Xy — Xe) o — By + S5 (Y2)] - (3.184)

(X;l - XZS)2
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I
I,
and
where
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" "

s (XD =Xy (X=X
X I, -4 M p 9 9y, — S2)(Y5)(3.185
q-4 (Xq_XZS) d (Xq_XZS)wQQ q ( 2)( )
1 ! !
7 [FEat (Xg = XL — ) + 517 (¥2) (3.186)
mq
X, — X

/ / (2)
m[wzq + (X, — Xes)y + By + Sy (Ya)] (3.187)

Yo = —XgI, — S5 (V2) (3.188)
o 2(ly B, ¢ I, Ey oy L) (3.189)
X/ _ XII
5@ A gl _ o) (Xq —Xg) 5@

/d (Xcll - XZS)

2) A Xmd o1 2) A 4(1 2
5@ & Xmagm g 2 g1 _ g0

Xtd fd» 1d — fd >
DA oy @ (X=X o
S 2 5 g (XZ_XZ)SQ(],
5@ A Xmg g(1) o) A ¢(1) _ g(2)
g — qu 1q » 2q — M2q 1q >
5@ 2 g (3.190)

with each SO evaluated using Y7, written as a function of Y5.
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Elimination of rotor currents from (3.64)—(3.72) gives the final dynamic
model with general nonlinearities.

1 d?/)d
W dt
1 di),
ws dt
1 dy,
ws dt
, dE,
Tdoﬂ

v diprg
Tdo dt
i
9 dt

i dipag
9 dt
ds
dt
2H dw
wg dt

with the three

g

Yq

Yo
Yy

Rslq+ wi% +Vy
w

Rqu - w_s¢d + Vvq

RsI,+V,

— (Xa— X)a—

X, - X,
(X[; - XZS)

—E,+ S8) (Ya))] - 5% (Ya) + By

—1q+ By — (Xg — Xe)Ia — S (va)
/ / X X
—Eq+ (Xq — Xy — m(lﬁzq
+Ey+ S5 (Y2))] + S (Va)
—tpag — By — (X — Xus)Ig — S5 (V2)
W — Wg
— (Yalg — Vglg) — Trw
algebraic equations,
" (X[,i, Xps) v (Xd Xd)
= =X, ,I;+ 7 E
X - X)) T (X — Xu)
~5P (v2)
(X// _ XZS) , (Xl X//
= X I, — E,+ -1 g
(Xy— Xes) (X, — Xuo)
—SP(Y2)

— X1, — S (Y2)
g E; V1a Iy B hag L)

5 (Y1 + (X,

(Xy

(3.191)
(3.192)
(3.193)
— X))y

(3.194)

(3.195)

— Xys)ly

(3.196)
(3.197)

(3.198)

(3.199)

(3.200)

(3.201)

(3.202)
(3.203)
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As in the last section, new speeds could be defined so that each dynamic state
includes a time constant. It is important to note, however, that, as in the
last section, terms on the right-hand side of the dynamic state model imply
that these time constants do not necessarily completely identify the speed
of response of each variable. This is even more evident with the addition of
nonlinearities.

One purpose for beginning this section by returning to the abc vari-
ables was to trace the nonlinearities through the transformation and scaling
process. This ensures that the resulting model with nonlinearities is, in some
sense, consistent. This was partly motivated by the proliferation of different
methods to account for saturation in the literature. For example, the litera-
ture talks about “X,,4” saturating, or X,,4 being a function of the dynamic
states. This could imply that many constants we have defined would change
when saturation is considered. With the presentation given above, it is clear
that all constants can be left unchanged, while the nonlinearities are included
in a set of functions to be specified based on some design calculation or test
procedure.

It is interesting to compare these general nonlinearity functions with
other methods that have appeared in the literature [20, 22, 23, 26, 27, 35, 36]—
[50]. Reference [37] discusses a typical representation that uses:

2 2 2
sP =0, 5% =0, 5P =0, 52 =0, 5& =0 (3.204)
and keeps SJ(%) and Sg) expressed as
/l/}// .
Sy = |¢—ff|5c:(|¢ ) (3.205)
wu(X _st) "
§? = a1 TRl g 3.206
1q ‘w ’(Xd_XZS) G(W ’) ( )
where
0| 2 (g2 + )2 (3.207)
and
voa (X —Xes\ (X, — X,
A (X E o+ 2d—2a 3.208
Yy <Xd_X£s> q+<Xd—Xes (3P ( )
" é X(;/_XZS / X:]—X:]/
g (T —) o+ (Rt ) v (3.209)
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The saturation function S¢g should be correct under open-circuit conditions.
For steady state with

Ij = I=I,=lLg=1I,=1I,=0
’l/}q = —Eél: ;,:_dewlq:¢2q:0
Yo = Eg=1vg=Vy=1v1a=Esa— Sﬁl) (3:210)

the open-circuit terminal voltage is

Viee =\/Vi+ V2 =E, (3.211)

(2)
B+ St '

and the field current is

= 212
fd X (3:212)
From the saturation representation of (3.205),
$E = So(Vi) (3.213)
deffd = Vtoc + SG(VtOC)- (3.214)

The function Sg can then be obtained from an open-circuit characteristic,
as shown in Figure 3.3. While this illustrates the validity of the saturation
function under open-circuit conditions, it does not totally support its use
under load. In addition, it has been shown that this representation does not
satisfy the assumption of a conservative coupling field [51].

3.6 Single-Machine Steady State

To introduce steady state, we assume constant states and look at the alge-
braic equations resulting from the dynamic model. We will analyze the sys-
tem under the condition of a linear magnetic circuit. Thus, beginning with
(3.148)—(3.159), we observe that, for constant states, we must have constant
speed w and constant angle J, thus requiring w = ws and, therefore,

Va = —Rslg— 1y (3.215)
Vo = —Rsl,+1y. (3.216)

Assuming a balanced three-phase operation, all of the “zero” variables and
damper winding currents are zero. The fact that damper-winding currents
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slope = X4
V /TZ__
Vi SG(V)
oc —> <
Xmd
Itg

Figure 3.3: Synchronous machine open-circuit characteristic

are zero can be seen by recalling that the right-hand sides of (3.152)—(3.154)
are actually scaled damper-winding currents. Using these to simplify (3.151),
(3.153), (3.157), and (3.158), the other algebraic equations to be solved are

= —E,—(Xq—X)I4+ Epq (3.217)

0 = —tpra+ B, — (Xy— Xes)ly (3.218)
0 = —E;+ (X, — X, (3.219)
0 = —thg— Bg— (X — Xus)], (3.220)
0 = Tar— (aly — la) — Trw (3.221)
e = E,— Xyl (3.222)
Vg = —Ey— X, (3.223)

Except for (3.221), these are all linear equations that can easily be solved for
various steady-state representations. Substituting for ¢4 and ¢, in (3.215)
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and (3.216) gives
Vi = —Rq+E;+ X, (3.224)
V, = —Ryy+E,— X, (3.225)

These two real algebraic equations can be written as one complex equation
of the form

(Va+3Vg)e! ™2 = —(Ry + jXg)La + 1)’ ™P + B (3.226)
where
E = [(Bg—(Xq— X)) + §(By + (Xg — Xg) 1)}’
= jl(Xq— X1y + E[)eI7/2), (3.227)
Clearly, many alternative complex equations can be written from (3.224)
and (3.225), depending on what is included in the “internal” voltage FE.
For balanced symmetrical sinusoidal steady-state abc voltages and currents,
the quantities (Vg + jV;,)e’®~™/2) and (I + jI,)e’®~™/2) are the per-unit
RMS phasors for a phase voltage and current (see (3.73)—(3.91)). This gives

considerable physical significance to the circuit form of (3.226) shown in
Figure 3.4. The internal voltage E can be further simplified, using (3.217),

Xq Ry (1g+jl,) ®72)
+

(Va 7,) 6

ol

°
Figure 3.4: Synchronous machine circuit representation in steady state
as
E = jl(X,— Xa)la+ Eg)e /2
= [(Xg = Xo)Ig + Egq)e’”. (3.228)
An important observation is

§ = angle on E. (3.229)
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Also from (3.142) and (3.143),
Ita = Eta) Xma. (3.230)

Several other points are worth noting. First, the open-circuit (or zero stator
current) terminal voltage is

(Vi + V) /D |1 _p—o= Erac®. (3.231)

Therefore, for Erq = 1, the open-circuit terminal voltage is 1, and field
current is 1/X,,4. Also,

Vilrer,—0 = Eyli=1,20= —%q |1)=1,=0=0 (3.232)
Vo llimt,=0 = By |1,=1,=0= ¥a |1,=1,=0= Ea. (3.233)

The electrical torque is
Terpc = Yalg — Yoly = Valy + Voly + Re(IF + I2) (3.234)

This torque is precisely the “real power” delivered by the controlled source
of Figure 3.4. That is, for I = (I4 +qu)ej(5_7r/2),

Teprec = Ty = Real[ET ] (3.235)

We can then conclude that the electrical torque from the shaft is equal to
the power delivered by the controlled source. In steady state, the electrical
torque from the shaft equals Ty when Try = 0. From the circuit with
V= (Vat5Vg)e! 0=/,

—( E-V \~
T — Real |E|—"—] |. 3.236
BLEC ea _ <R5+jXq> ] ( )

For zero stator resistance and round rotor,

[ A Epe i T
TeLEC | Re—o = Real | Epqel® et i (3.237)
X=X, I —JXaq
or
EV
Tprec | s = —L—sin oy (3.238)
X=X, Xq
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where the angle 7 is called the torque angle,

Sr25-0 (3.239)
with

V=ve, (3.240)

Under these conditions, and this definition of the torque angle, d7 < 0 for a
motor and d7 > 0 for a generator.

Example 3.1

Consider a synchronous machine (without saturation) serving a load with
V =1/10°pu I =0.5/—20° pu.

It has X4 = 1.2, X, = 1.0, X,,,q = 1.1, X, = 0.232, Ry = 0 (all in pu). Find
8, 01, Ig, Iy, Va, Vi, a, g, Eys Ega, Iya (all in pu except angles in degrees).

Solution:

(0.76814 + E) /0 = 1/90 x 0.5/ —20° + 1/10°
= 1.323/29.1°

S
6 =29.1° 6r =29.1° —10° =19.1°
I+ jl; = 0.5/ —20° —29.1° 4+ 90° = 0.5/40.9°
I; =0.378 I, =0.327
Va+3Vy = 1/10° — 29.1° 4+ 90° = 1/70.9°
Va=10.327 V;, =0.945
a =V, + 01, = 0.945
Wy = —Vy — 01 = —0.327.
To find Ej, and Eyq, return to | E |

0.768 x 0.378 + E/, = 1.323
E/ = 1.033
1.033 = —(1.2 — 0.232) x 0.378 + Efq
Ejq = 1.399.
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To find Iy, it is easy to show that

Etq 1.399
Iiy=——=——=1.27.
=X 0T 11
These solutions can be checked by noting that, in scaled per unit, Tgprgc is

equal to Poyr.

TELEC = ¢qu — T/Jqfd = 0.4326
Pour = Real (VI") =Real (0.5/+30°) = 0.433.

Also,

= ok

Qovr = Imag(VT") = Imag(0.5/30°) = 0.25
= Tmag((Va + jVy)e 7O/ 1y — jI,)elO=7/2)
= Imag((Va + jVy)(la — 1))
= gl + Y, = 0.25.

|

The steady-state analysis of a given problem involves certain constraints.
For example, depending on what is specified, the solution of the steady-
state equations may be very difficult to solve. The solution of steady-state
in multimachine power systems is usually called load flow, and is discussed
in later chapters. The extension of this steady-state analysis to include
saturation is left as an exercise.

3.7 Operational Impedances and Test Data

The synchronous machine model derived in this chapter was based on the
initial assumption of three stator windings, one field winding, and three
damper windings (1d, 1¢, 2¢). In addition, the machine reactances and time
constants were defined in terms of this machine structure. This is consis-
tent with [20] and many other references. It was noted earlier, however,
that many of the machine reactances and time constants have been defined
through physical tests or design parameters rather than a presupposed phys-
ical structure and model. Regardless of the definition of constants, a given
model contains quantities that must be replaced by numbers in a specific
simulation. Since designers use considerably more detailed modeling, and
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physical tests are model independent, there could be at least three different
ways to arrive at a value for a constant denoted by the symbols used in the
model of this chapter. For example, a physical test can be used to compute
a value of TC}/O if Tclllo is defined through the outcome of a test. A designer can
compute a value of T (;,o from physical parameters such that the value would
approximate the test value. The definition of T C/llo in this chapter was not
based on any test and could, therefore, be different from that furnished by a
manufacturer. For this reason, it is important to always verify the definitions
of all constants to ensure that the numerical value is a good approximation
of the constant used in the model.

The concept of operational impedance was introduced as a means for
relating test data to model constants. The concept is based on the response
of a machine to known test voltages. These test voltages may be either dc or
sinusoidal ac of variable frequency. The stator equations in the transformed
and scaled variables can be written in the Laplace domain from (3.64)(3.72)
with constant speed (w = wss) as

Vi = —Rgg— =29, + =1 3.241
d 1 Yy + o Vg ( )

_ _ Wes— S

Vo = —Rdy+ "0, + 1, (3.242)

Vo = —R,+ f@o (3.243)

where s is the Laplace domain operator, which, in sinusoidal steady state
with frequency w, in radians/sec, is

5 = jwo. (3.244)

If we make the assumption that the magnetic circuit has a linear flux link-
age/current relationship that satisfies assumptions (3) and (4) of Section
3.3, we can propose that we have the Laplace domain relationship for any
number of rotor-windings (or equivalent windings that represent solid iron
rotor effects). When scaled, these relationships could be solved for v, @q,
and 1, as functions of I, I,, I,, all rotor winding voltages and the operator
s. For balanced, symmetric windings and all-rotor winding voltages zero
except for V}g4, the result would be

S)Td + aop(S)Vfd (3.245)
s)I, (3.246)
1/}0 = _XoopTo' (3247)
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To see how this could be done for a specific model, consider the three-
damper-winding model of the previous sections. The scaled Kirchhoff equa-
tions are given as (3.67)—(3.70), and the scaled linear magnetic circuit equa-
tions are given as (3.122)—(3.128). From these equations in the Laplace
domain with operator s and Vi4 = V14 = Vo, =0,

S

W_S[de(_jd) + Xfal ja+ caXmalia) = —Ryalra+Vya (3.248)
wis[de(_Td) +caXmalra+ X1aTia) = —Ridlia (3.249)
wis[qu(—Tq) + X1gTy + cqXmglag) = —Riglig (3.250)
wis[qu(_Tq) + Cququq + X2q72q] = _R2q72q (3-251)
Vo = Xps(—1,). (3.252)

The two d equations can be solved for de and I14 as functions of s times I4
and V td- The two ¢ axis equations can be solved for qu and qu as functions
of s times I,. When substituted into (3.122) and (3.125), this would produce
the following operational functions for this given model:

Ydop(s) = Xy

_ [ K mala + 2 X0 = 255 caXoma + Bya + 5 Xpa) (3.253)
(Rfd+wistd)(R1d—|— wiled) — (wischmd)z .
Val Xm Rig+-2X1,—2c Xm
Gop(s) = : it g, e i | (3.254)
(Rpa + = X1a)(Rig + =X14) — (Z€aXma)
ch)p(s) = X,
S X (Raq + 55 X2g — 250 Xmg + Rig + 5 X
_ws q( 29 T 0,2 ws 4 q g T & 1q) (3255)

(R2q + wiSX2q)(R1q + wiSqu) - (wiSCquq)2
7oop(s) = Xys (3256)
Note that for s = 0 in this model

Xaop(0) = Xg (3.257)

_ X

Gop(0) = R—"” (3.258)
fd

Xop(0) = X, (3.259)
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and for s = oo in this model with ¢q = ¢, =1

Xaop(c0) = X, (3.260)

Xyop(0) = X,. (3.261)

For this model, it is also possible to rewrite (3.253)—(3.256) as a ratio of
polynomials in s that can be factored to give a time constant representation.
The purpose for introducing this concept of operational functions is to show
one possible way in which a set of parameters may be obtained from a
machine test. At standstill, the Laplace domain equations (3.241)—(3.243)
and (3.245)—(3.247) are

Vd = - (Rs + wiXdop(S)> Td + wiaOp(s)Vfd (3262)
Vg = — (Rs + winOP(S)) I, (3.263)
Vo = — (Rs + wiXoop(s)) TO' (3264)

To see how these can be used with a test, consider the schematic of Figure 3.1
introduced earlier. With all the abc dot ends connected together to form a
neutral point, the three abc x ends form the stator terminals. If a scaled
voltage Viagt is applied across be, with the a terminal open, the scaled series
I.(—1p) current establishes an axis that is 90° ahead of the original a-axis, as
shown in Figure 3.5. With this symmetry and 0} ¢ = 2% mech. rad (found
by observing the field voltage as the rotor is turned), the scaled voltage V,
will be zero even for nonzero I. = —1Ij, and Iy, since its axis is perpendicular
to both the b- and c-axis and the field winding d-axis. Also, the unscaled
test voltage is

Utest = Ub — Ve (3.265)
and, by symmetry with 6} ¢ = 2% mechanical radians,

UVp = —Ve. (3.266)

The unscaled transformed voltages are

Vi = 5l 5Ue = 5 Utest (3.267)
Vg = V,=0 (3.268)
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c
(terminal) (@)

a-axis

(neutral) (@) (X) (neutral)

a (open)

Figure 3.5: Standstill test schematic

and the unscaled transformed currents are

iqg = ?ib —~ ?z = V3iy = V3igegt (3.269)
ig = 1,=0. (3.270)
For a test set of voltage and current,
Vtest = V3V2Vi, cos(wot + 0,) (3.271)
ltest = V2I,, cos(wot + @) (3.272)

with scaled RM S cosine reference phasors defined as

A \/gmo ejeo

v = 3.273
1St ™ Viapc ( )
= A Ito i
I = —2 ¢l% 3.274
test ™~ Ipapc ( )
the scaled quantities Vy; and I, are
Vg 1 V3
Vy, = = ~2V3V2V,, cos(wot + 6, 3.275
‘ VepQ  v2Vpapc 2 fo 005 ) (827)
— 1
I = U V321, cos(wol + do) (3.276)

Iepo  V2Ipapc
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or

V3 —
vV, = 7"/‘5%5‘5‘ cos(wot + 6,) (3.277)

I = —V3|Tagt| cos(wot + ¢o) (3.278)
pu

— 3
(Va=

ol%

_ 0, & _ _ 5
’Vtest | ¢ 7Id__\/?;”test ’em ).
pu pu

For s = jw,, the ratio of test voltage to current is

1% _

o test V
Zo(jwo) 2 == —2T—d (3.279)

tggt d

which can be written as a real plus imaginary function
Zo(jwo) = Ro(wo) + j Xo(wo)- (3.280)

Therefore, from (3.262), with V4 = 0 and s = jw,,

Wo > . 1 .
(Rs +Jw—Xdop(,7wo)) = 5Zo(jwo)- (3.281)

Clearly R is one-half the ratio of a set of dc test voltage and current. After
R, is determined, the operational impedance for any frequency w, is

— w Vtgst
Xaop(jwo) = —j— | =— — Rs | - (3.282)
wo | 21
tgst

A typical test result for a salient pole machine is shown in Figure 3.6 [20, 52]
(Xaop(jwo) is a complex quantity). The plot typically has three levels
with two somewhat distinct breakpoints, as shown. For round rotor ma-
chines, the plot is more uniform, decreasing with a major breakpoint at 0.01
Hz. A similar test with different rotor positions could be used to compute
X gop(jwo). These tests, as well as others, are described in considerable detail
in [20, 52, 53|. Reference [53] also includes a discussion on curve-fitting pro-
cedures to compute “best-fit” model parameters from the frequency response
test data. For example, the operational impedance Ydop(s) for the model
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1.0 —

K., G, )|

0.1 —

I I I | I I
0.01 0.1 1.0 10 100 1000

o, rad/sec

Figure 3.6: Salient-pole machine

used earlier is given by (3.253). If a plot similar to Figure 3.6 (together
with a plot of the angle on X 4,,(s)) is available, the model parameters can
be computed so that (3.253) is some “best-fit” to Figure 3.6. It is possible
to make the fit better for different frequency ranges. Thus, the data to be
used for a given model can be adjusted to make the model more accurate in
certain frequency ranges. The only way to make the model more accurate
in all frequency ranges is to increase the dynamic order of the model by
adding more “damper” windings in an attempt to reach a better overall fit
of X 4op(8) to the standstill frequency response. Similarly it is clear that the
key to model reduction is to properly eliminate dynamic states while still
preserving some phenomena (or frequency range response) of interest. This
is discussed extensively in later chapters.

In summary, it is important to note several important points about syn-
chronous machine dynamic modeling. First, the literature abounds with
various notational conventions and definitions. The notations and conven-
tions used in this text are as standard as possible given the proliferation of
models. It basically follows that of [20]-[29]. Second, it is important to re-
peat that standard symbols have been defined through the model proposed
in this text (and [20]-[29]) with a few noted exceptions. The procedures
followed by the industry often define constants through well-defined tests.
In some cases, these definitions do not coincide precisely with the model
definitions in this text. Thus, when using data obtained from manufactur-
ers, it is important to clarify which definition of symbols is being used. If
frequency response data are given, the model parameters can be computed
using curve-fitting techniques.
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3.8 Problems

3.1 The text uses T4, to transform abc variables into dgo variables. Con-
sider the following alternative transformation matrix:

P P 2 P 2
5 cos 50shatt €08 (T0shatt — 5 ) oS (F0shatt + 5
Pugo = \/g sin gfshaft sin

P 2 (P 2
Eeshlaft — %) sin Eeshlaft +3
V2 V2 V2
Show that ijo = Pd_qi (P4qo is orthogonal).

3.2 Given the following model

d\
pr— 1 1 —_— pr— . )
v=10i + —, A=0.05i

scale v,i, and A as follows:

v i A
V:— I:— = —
VB’ IB’¢ AB
to get
1
V:RI+—@,¢=XI.
det

Find R and X if Vz = 10,000 volts, Sp = 5 x 106 VA, wp = 2760
rad/sec, and Ip = Sp/Vp, Ap = Vp/wp.

3.3 Using the Py, of Problem 3.1 with

ve = V2V cos(wst +6)

2
vp = \/§Vcos(wst+0—§)

2
Ve = \/§Vcos(wst+0+§)

and & 2 geshaft — wst — 5, express the phasor V = Vel in terms of
V4, Vg, and d that you get from using Py, to transform vg, vp, v, into
Vd, Vg, Vo-

3.4 Neglect saturation and derive an expression for E' in the following
alternative steady-state equivalent circuit: Write E' as a function of
By, 14, 1y, 0.
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Xi R (14 +j1,) 72
Y\ V\l NP
+
et (Va+vy) &0
0O

3.5 Given the magnetization curve shown in pu, compute X,,q and plot

Sa(y) for
1/} = deI - SG(l/})

1.5 /

v 1.0 /

0.5 —

1.0 2.0 3.0 I

3.6 Repeat the derivation of the single-machine steady-state equivalent cir-
cuit using the following saturation functions:

2 2 2
{7 = 5(3 = 5% - — s 5% —0

where S is obtained from the open-circuit characteristic as given in
the text.
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3.7 From Ref. [51], show that the saturation model of Problem 3.6 does
satisfy all conditions for a conservative coupling field.

3.8 Given (3.122)—(3.124) and (3.125)—(3.127), together with (3.64)—(3.70),
find a circuit representation for these mathematical models. (Hint:
Split Xg, X4, X14, etc. into leakage plus magnetizing.)

3.9 Given the following nonlinear magnetic circuit model for a synchronous
machine:

Ve = Xa(—1q) + Xmalpa — Sa(a, ¥ ya)
Vg = Xpa(—Ia) + Xyalra — Spa(a, ¥ya)

Vg = Xq(—1g) + Xmqliqg — Sq(thg; 1)
Vg = Xn (_Iq) + Xigl1g — Slq(quwlq)-

(a) Find the constraints on the saturation functions Sg, Stq, Sy, Siq
such that the overall model does not violate the assumption of a
conservative coupling field.

(b) If the other steady-state equations are

Vi=—Rslg—vg  Via= Ryalyq
Vy=—Ry+ta  0=Ry,l,

find an expression for E, where E is the voltage “behind” Rs+jX,
in a circuit that has a terminal voltage

V = (Vg4 jV,)e? =7/,
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Chapter 4

SYNCHRONOUS
MACHINE CONTROL
MODELS

4.1 Voltage and Speed Control Overview

The primary objective of an electrical power system is to maintain balanced
sinusoidal voltages with virtually constant magnitude and frequency. In the
synchronous machine models of the last chapter, the terminal constraints
(relationships between Vg, Ig, Vy, Iy, V,, and I,) were not specified. These
will be discussed in the next chapter. In addition, the two quantities E'rq and
Ty were left as inputs to be specified. Eq is the scaled field voltage, which,
if set equal to 1.0 pu, gives 1.0 pu open-circuit terminal voltage. T, is the
scaled mechanical torque to the shaft. If it is specified as a constant, the
machine terminal constraints will determine the steady-state speed. Speci-
fying Etq and T to be constants in the model means that the machine does
not have voltage or speed (and, hence, frequency) control. If a synchronous
machine is to be useful for a wide range of operating conditions, it should be
capable of participating in the attempt to maintain constant voltage and fre-
quency. This means that Ey; and T should be systematically adjusted to
accommodate any change in terminal constraints. The physical device that
provides the value of E, is called the exciter. The physical device that pro-
vides the value of T is called the prime mover. This chapter is devoted to
basic mathematical models of these components and their associated control
systems.

65
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4.2 Exciter Models

One primary reason for using three-phase generators is the constant electrical
torque developed in steady state by the interaction of the magnetic fields
produced by the armature ac currents with the field dc current. Furthermore,
for balanced three-phase machines, a dc current can be produced in the
field winding by a dc voltage source. In steady state, adjustment of the
field voltage changes the field current and, therefore, the terminal voltage.
Perhaps the simplest scheme for voltage control would be a battery with
a rheostat adjusted voltage divider connected to the field winding through
slip rings. Manual adjustment of the rheostat could be used to continuously
react to changes in operating conditions to maintain a voltage magnitude
at some point. Since large amounts of power are normally required for the
field excitation, the control device is usually not a battery, and is referred to
as the main exciter. This main exciter may be either a dc generator driven
off the main shaft (with brushes and slip rings), an inverted ac generator
driven off the main shaft (brushless with rotating diodes), or a static device
such as an ac-to-dc converter fed from the synchronous machine terminals or
auxiliary power (with slip rings). The main exciter may have a pilot exciter
that provides the means for changing the output of the main exciter. In any
case, E¢qg normally is not manipulated directly, but is changed through the
actuation of the exciter or pilot exciter.

Consider first the model for rotating dc exciters. One circuit for a sepa-
rately excited dc generator is shown in Figure 4.1 [21].

lin1 11 L Ta
> AAA

Saturation +

€ —
in] Lf] Ka1 1 ¢g7 €outl = Vfd

Figure 4.1: Separately excited dc machine circuit

Its output is the unscaled synchronous machine field voltage vsq. For
small r,1 and Lgq, this circuit has the dynamic model

. dX 1
€nl = Zin17’f1+—df (4.1)

vig = Kawida (4.2)
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with the exciter field flux linkage related to field flux ¢ by
Ar1 = Nyi1gyr. (4.3)

Assuming a constant percent leakage (coefficient of dispersion o1), the ar-
mature flux is

1
a1 = —j1. (4.4)
o1
Assuming constant exciter shaft speed w1,
Nyroq
A = ———Vq. 4.5
n Koo (4.5)

Now, the relationship between vy and ;7 is nonlinear due to saturation
of the exciter iron, as shown in Figure 4.2. Without armature resistance

/:/Slope K¢

Vfd_—4 —

| (w1 = constant)

—’| |‘—Aiinl

Vres |
Vfd  iiny

K

Figure 4.2: Exciter saturation curve

or inductance, this curve is valid for open-circuit or loaded conditions. The
slope of the unsaturated curve (air-gap line) is [55]

Kg1 = ——Lsus (4.6)
101

where L fiyg is referred to as the “unsaturated” field inductance. The sat-
uration can be accounted for by a saturation function fg,¢ defined through
Figure 4.2 as

fsat(vra) = Aijnq/vga- (4.7)

In terms of these quantities,

L ¢1us
A = 4.
n=K, Vfd (4.8)
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and
. Vfd
Ynl = Kf + fsat (Vfa)vya- (4.9)
gl
With these assumptions, the unscaled exciter dynamic model is
Tl Lus dogg
] = —— —_— 4.10
“inl = g vrdt T fsat(vra)vra + Ky dt (4.10)

This equation must now be scaled for use with the previously scaled syn-
chronous model. Since the armature terminals of the exciter are connected
directly to the terminals of the synchronous machine field winding, we must
scale vgq as before and use the same system power base. Thus, using (3.54),
(3.59), (3.113), and (3.139), we define

A dee- 1
Ve = —reant 4.11
RqVBFD (4.11)
ATl
K = — 4.12
Esep Kgl ( )
A Lyfius
Ty = ——— 4.13
E Ky (4.13)
A VBrpRyq
Se(Erd) = rpfsat (Tdefd) (4.14)
my

With these assumptions and definitions, the scaled model of a separately
excited dc generator main exciter is

dE 4
Ed—tf = — (KESGp + SE(Efd)) Efd + VR. (4.15)

The input Vg is normally the scaled output of the amplifier (or pilot exciter),
which is applied to the field of the separately excited main exciter.

When the main dc generator is self-excited, this amplifier voltage appears
in series with the exciter field, as shown in Figure 4.3. This field circuit has
the dynamic equation

. dX sy
Cinl = Tfiiin] + g — Vs (4.16)

with the same assumptions as above, and the new constant K Egolf defined
as

Kg

o = Kbsep — 1 (4.17)
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linl

T Tal
Saturation
L,(1 La1 €outl = Vfd

€inl @ K1 01 941
N _

Figure 4.3: Self-excited dc generator circuit

The scaled model of a self-excited dc generator main exciter is, then,

15900 — (K o+ Se(Ep) g+ Vi (4.18)
For typical machines, Kg is a small negative number. To allow voltage
buildup, it would be necessary to specify Vg to include the residual voltage
that exists at zero 4;;,1, as shown in Figure 4.2. Also, if e;;1 is replaced by a
rheostat whose variable resistance is included in ryy, K B¢ and Sg would
be functions of both the actual field resistance and the rheostat resistance.
This rheostat can be set to produce the required terminal voltage. In steady
state with Vg = Vyeg this requires

o Vres

That is, since ry; includes the rheostat setting, it can be adjusted for a
given steady-state condition. This would make r 1, rather than Vg, a control
variable.

In steady state, the exciter equation (written simply with Kg) is

0=—(Kg+ SE(Efd))Efd + Vg. (4.20)

The input Vi usually has a maximum Vg ., , which produces maximum
(ceiling) excitation voltage Etq4, .. . Since Sk is a function of this excitation
level, these quantities must satisfy

O = _(KE + SEmax)Efdmax + VRmax' (421)
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When specifying exciter data, it is common to specify the saturation function
through the number Sg, . and the number Sgg 75,,.., which is the saturation
level when Eyg4is 0.75 Eyq,. . A saturation function is then fitted to these
two points. One typical function is

Sp(Efq) = AgeBrfra, (4.22)
When evaluated at two points, this function gives

SEmax = ACCeBQCEfdmaX (423)
SE0 5 = AgeD1Brim, (4.24)

For given values of Kg, Vr,.., SEnax> a0d SE0.75,,.., the constants A, and
B, can be computed. This is illustrated in the following example.

Example 4.1

Given: Kg =1.0, Vg,... = 7.3, SEp.. = 0.86, SE0.75,0. = 0.50 (all in pu)
Find: A, and B,

Solution:
From (4.20),
0 = —(14+0.86)Etg,,, +7.3
086 = AgePelramax
0.50 = AyeBr1Eramax

Solving these three equations gives

Eja,.. = 3.925
A, = 0.09826
B, = 0.5527

a

References [55, 56] and [75] give additional information on these and
other exciter models.
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4.3 Voltage Regulator Models

The exciter provides the mechanism for controlling the synchronous machine
terminal voltage magnitude. In order to automatically control terminal volt-
age, a transducer signal must be compared to a reference voltage and am-
plified to produce the exciter input Vi. The amplifier can be a pilot exciter
(another dc generator) or a solid-state amplifier. In either case, the amplifier
is often modeled as in the last section with a limiter replacing the saturation
function.

dv,
TAd—f = Vit KaViy (4.25)
Vi < Vg < Ve (4.26)

where V;, is the amplifier input, T’y is the amplifier time constant, and K 4
is the amplifier gain. The Vi limit can be multivalued to allow a higher
limit during transients. The steady-state limit would be lower to reflect
thermal constraints on the exciter and synchronous machine field winding.
Recall that Vg is the scaled input to the main exciter. This voltage may be
anything between zero and its limits if the main exciter is self-excited, but
must be nonzero if the exciter is separately excited. We have assumed that
the amplifier data have been scaled according to our given per-unit system.
If the voltage Vj;, is simply the error voltage produced by the difference
between a reference voltage and a conditioned potential transformer con-
nected to the synchronous machine terminals, the closed-loop control system
can exhibit instabilities. This can be seen by noting that the self-excited dc
exciter can have a negative K such that its open-loop eigenvalue is positive
for small saturation Sp. Even without this potential instability, there is
always a need to shape the regulator response to achieve desirable dynamic
performance. In many standard excitation systems, this is accomplished
through a stabilizing transformer whose input is connected to the output of
the exciter and whose output voltage is subtracted from the amplifier input.
A scaled circuit showing the transformer output as V is shown in Figure 4.4.
If ;o is initially zero and Lyo is very large, then Iys must remain near zero.
With this assumption, an approximate dynamic model for this circuit is

dl
Etg = Ruln + (La + Ltm)d—;l
Ny dly

Etmdt

(4.27)

Ve = (4.28)
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Ideal

Figure 4.4: Stabilizing transformer circuit

where Vr is a scaled output of the stabilizing transformer. Differentiating
Vi and Eyq gives

AV Ny < 1 (dEfd_ Ru My >) (4.20)
AL+ Lim) \ dt L N2 *))° ‘

dat N

Using (4.18) with general Kr and defining

L L,
Tp & Lt i (4.30)
Ry
A N2 Ltm
K = —— 4.31
F N1 Ry (4:31)

the dynamic model of the stabilizing transformer can be written as

TF% = —Vr+Kp (—

K+ Sp(E %
- Kp + S5(Ed) fd)EfdJr—R). (4.32)

e e
Another form of this model is often used by defining

K
Ry 2 T—iEfd—VF. (4.33)

With Ry (called rate feedback) as the dynamic state,

dR; Kr
Thp—— = — — . 4.34
P Ry + T, rd (4.34)

This form will be used throughout the remainder of the text.

If the amplifier input V;;, contained only the reference voltage minus the
terminal voltage minus Vg, the voltage regulator could still have regulation
and stability problems. There can be regulation problems when two or more
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synchronous machines are connected in parallel and each machine has an
exciter plus voltage regulator. Since the synchronous machine field current
has a major role in determining the reactive power output of the machine,
parallel operation requires that the field currents be adjusted properly so
that the machines share reactive power. This is accomplished through the
addition of a load compensation circuit in the regulator, which makes the
parallel operation appear as if there are two different terminal voltages even
though both machines are paralleled to the same bus. This can be done
by including stator current in the regulator input. To see how this can
be modeled, consider the scaled terminal voltages V,, V3, and V. found by
transforming and rescaling Vy, V;, and V,. Using (3.14) with V, = 0 and
(3.39)

Vo = V2(Vgsin(wst + &) + V; cos(wst + 6)) (4.35)
Vi = V2 (Vd sin (wst 4+ - 2%) + V, cos (wst +d— 2%)) (4.36)

V. = V2 (Vdsin (wst—i-é—i— 2%) + V, cos (w5t+6+ 2%)) . (4.37)

The stator line currents I, I, and I. are related in the same way with Vj,
and V; replaced by I; and I,. These expressions are valid for transients as
well as steady state, and can be written alternatively as

— 2 4l 1Y

Vo = V2/VZ2+ V2 cos <wst +0— 5 + tan Vd) (4.38)
_ 172 ul Ve 2r

Vi = V2,/V?+ V2 cos <wst +0— 5 + tan v ?) (4.39)
_ f72 112 _r 1 Ve 27

V. = V2,/Vi+ Vi cos <wst+ o 5 + tan v, + 3 ) (4.40)

and similarily for I,, I, and I.. To see how load compensation can be
performed, consider the case of an overexcited synchronous machine (serv-
ing inductive load), with the steady-state phasor diagram of Figure 4.5.
Suppose that the sensed voltage is line-to-line RMS voltage V 4.; then the
uncompensated voltage is defined as

2 %WGCI. (4.41)

Consider the compensated voltage defined as

Vtuncomp

A

1 — _
Vicomp ﬁﬂ/ac— occomp 1ol (4.42)
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SIA

/6 v

Figure 4.5: Steady-state overexcited phasor diagram

where ocomp is some positive compensation constant. The compensated
terminal voltage will differ from the uncompensated terminal voltage by an
amount proportional to xcomp and the phase shift of I,. With I, in the
position shown in the phasor diagram, and if the reference voltage is near
the uncompensated value of V;, the error signal from the compensated V;
will tell the regulator to lower the terminal voltage (the reverse of what
you might expect!). When the machine is underexcited (serving capacitive
load), the current I, will lead V, and the compensated voltage will be
less than the uncompensated voltage. This voltage, when compared to a
reference voltage near the uncompensated voltage, will tell the regulator to
raise the terminal voltage (again, the reverse of what you might expect).
When two generators are operating in parallel, if the field current on one
generator becomes excessive and causes “circulating” reactive power, this
reactive power will be an inductive load to the excessively excited machine
and a capacitive load to the other. The compensation circuits then will
cause the excessive excitation to be reduced and the other to be raised, thus
balancing the reactive power loading. This type of load compensation is
called parallel droop compensation. Additional types of compensation that
do not result in a drop in voltage under inductive load are also available.

In terms of the dgq components of V,, V., and I, we can define the
compensated and uncompensated voltages as

2
A 1 3 V3
‘/tCOmp = % <§Vd + 7‘/;1— Xcomp [d>
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/3 971/2
3 3
+ <§Vq - 7Vd— Xcomp Iq> } . (4.43)
This gives

Wuncomp = Vtcomp |0<comp=0 =V Vi + Vi (4.44)
Example 4.2

Vo = 10, Vy=1/—-120° V.= 1/120°
I, = 0.5/180° (all pu).

This is a power factor = cos 60° (lagging power factor load)

1
Vtuncomp = %\/gzl'o

1

Vtcomp = \/g | \/51 —30°— Xcomp 0.5/180 | .

For OCcomp: 0.1

Vicomp = 1.025.

If the reference voltage is 1.0, the voltage regulator will attempt to lower the
voltage by lowering E,. O
Example 4.3

Let us use the same voltages, I;, = 0.5/ —90° (pu). This is the power factor
cos 30° (leading).

1
Vtuncomp = %\/g =10
1
Vicomp = 7 | V34 —30° — 0.05£ — 90° |
= 0.986.

If the reference voltage is 1.0, the voltage regulator will attempt to raise the
voltage by raising Erq. This compensation will make two parallel generators
share the total reactive power output. O
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Realizing that the sensed voltage may be either compensated or uncom-
pensated, we simply drop the subscript and write the final general expres-
sion for the amplifier input voltage using the stabilizer feedback variable R,
rather than Vg, as

Vin = Veer— Vit Iy — %Efd' (4.45)

F

In this model, we have not included any dynamics for the transducer, which
could be a potential transformer, filters, and smoothers. There are many
other fine details about excitation systems that may be important for some
simulations. In keeping with the philosophy of this text as one on funda-
mental dynamic modeling, we conclude this section with a summary of a
fundamental model of an excitation system:

dE
TETN = —(Kg+Se(Epa))Efa+ VR (4.46)
dR; Kp
Te—L = — “Lg 44
ot Ry + 7, Era (447)
v KuK
TAd—tR = —Vrp+KaRy - ;FFEfd
+KA(Vier — Vi) (4.48)
VRN < Vg < Vax (4.49)

where K may be the previously defined separate or self-excited constant,
and V; may be either of the previously defined compensated or uncompen-
sated terminal voltages. To be complete, the model should include an ex-
pression for Sg and an algebraic equation for V4.

4.4 Turbine Models

The frequency of the ac voltage at the terminals of a synchronous machine
is determined by its shaft speed and the number of magnetic poles of the
machine. The steady-state speed of a synchronous machine is determined
by the speed of the prime mover that drives its shaft. Typical prime movers
are diesel engines, gasoline engines, steam turbines, hydroturbines (water
wheels), and gas turbines. The prime mover output affects the input T,
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in the model of the last chapter. This section presents basic models for the
hydroturbine and steam turbine.

Hydroturbines

Hydropower plants have essentially five major components. These are the
storage reservoir, intake tunnel, surge tank, penstock, and water (hydro)
turbine. Precise nonlinear models of these components are not typically
used in power system dynamic analysis. Alternatively, approximate linear
models are used to capture the fundamental characteristics of the plant and
its impact on the electrical system. Thus, the following models should not be
used for studies where large changes in turbine power are expected. Since the
turbine torque is the primary variable of interest, most models are made as
simple as possible while still preserving the turbine torque and speed control
characteristics. The power to the water turbine depends on the position of
the gate valve at the bottom of the penstock. The power is derived from the
water pressure that arises due to the water head (elevation). The penstock
is the water channel from the intake tunnel of the elevated reservoir down
to the gate valves and turbine. The gate valve position then corresponds
to a certain level of power Ppy at rated speed. Using scaled parameters
consistent with the last chapter, a simplified model of hydroturbine small-
change dynamics is [57]

AFR = A ATH+ ApAwgr + A13APyy (4.50)
ATgr = AnATH + AxpAwgr + AssAPrhy (4.51)

where AF'R is the change in water flow rate, AT H is the change in turbine
head, Awgr is the change in hydroturbine speed, and ATy is the change
in hydroturbine output torque, all scaled consistently with the last chapter.
One common model considers only two dynamic phenomena, the rate of
change of flow deviation as [57]

dAFR _ATH

dt N T,

(4.52)

and Newton’s law for the turbine mass with scaled inertia constant H g

dA;tHT = Awgr (4.53)
2Hnr dAwnt g ATy, (4.54)

W dt
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where T, is the water starting time in seconds, and T is as previously de-
fined for the synchronous machine shaft dynamics. The last equation allows
for the case where the shaft connection between the hydroturbine output
and the synchronous machine input is considered a stiff spring rather than
a rigid connection. In this case, the change in torque into the synchronous
machine would be

ATy = —KHM(Aé—A(sHT) (4.55)

where K represents the stiffness of the coupling between the turbine and
the synchronous machine, and ¢ is the machine angle, as previously defined.
While it is clearly possible to keep all terms, it is customary to assume that
ApAwgr and Ay Awgyr are small compared to other terms.

For operation near an equilibrium point (denoted as superscript o) with

and

the actual variables are

Tyr = TSy + ATy (4.58)
Ty = TS+ ATy (4.59)
Pyy = Ppy+ APyy (4.60)

5 o= & 1AS (4.61)
Sur = 0%p + Adur (4.62)
wr = Whp + Awgr. (4.63)

The hydroturbine model written in actual per-unit torques (but valid only
for small changes about an equilibrium point) is written with T as a state:

dTHT 1 A2

TUJT = —A—HTHT + A—li’PHV
+T, <A23 - Ajﬁ”) d];’;f v (4.64)
d(ZZT = WHT — Ws (4.65)
212” d“;i” — Tyur—Tu (4.66)

Ty = _KHM(5_5HT)- (4.67)
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When used with the synchronous machine model, the above T; expression
must be used in the speed equation for the synchronous machine. Thus, the
synchronous machine and turbine are coupled through the angles § and d 7.
The hydrovalve power Pgy will become a dynamic state when the hydro-
governor is added. For a rigid connection, Ty becomes Ths and the turbine
inertia is simply added to the synchronous machine inertia H, giving only

dlyy 1 Ao <A B A13A21) dPrv

23

L ABp
dt A Mt g A T AL dt

and Tjs remains in the synchronous machine speed equation. For an ideal
lossless hydroturbine at full load [57]

A1; =05, Ay =15, A3 =10, Ay3=10 (4.69)

T (4.68)

and T,, ranges between 0.5 and 5 seconds. Additional hydroturbine models
are discussed in references [57]-[59].

Steam turbines

Steam plants consist of a fuel supply to a steam boiler that supplies a
steam chest. The steam chest contains pressurized steam that enters a high-
pressure (HP) turbine through a steam valve. As in the hydroturbine, the
power into the high-pressure turbine is proportional to the valve opening.
A nonreheat system would then terminate in the condenser and cooling sys-
tems, with the HP turbine shaft connected to the synchronous machine. It
is common to include additional stages, such as the intermediate (IP) and
low (LP) pressure turbines. The steam is reheated upon leaving the high-
pressure turbine, and either reheated or simply crossed over between the IP
and LP turbines. The dynamics that are normally represented are the steam
chest delay, the reheat delay, or the crossover piping delay. In a tandem con-
nection, all stages are on the same shaft. In a cross-compound system, the
different stages may be connected on different shafts. These two shafts then
supply the torque for two generators. In this analysis, we model the steam
chest dynamics, the single reheat dynamics, and the mass dynamics for a
two-stage (HP and LP) turbine tandem mounted. In this model, we are
interested in the effect of the steam valve position (power Pgsy ) on the syn-
chronous machine torque 7. The incremental steam chest dynamic model
is a simple linear single time constant with unity gain, written in scaled
variables consistent with the last chapter as

dAPoy
,aten

T,
CH™ 0t

— _APcy + APsy (4.70)



80 CHAPTER 4. SYNCHRONOUS MACHINE CONTROL MODELS

where APoy is the change in output power of the steam chest. This output
is either converted into torque on the HP turbine or passed on to the reheat
cycle. Let the fraction that is converted into torque be

ATyp = KypAPcy (4.71)

and the fraction passed on to the reheater be (1—Kgp)APog. The dynamics
of the HP turbine mass in incremental scaled variables are

dAthP = Awgp (4.72)
ﬂiﬂ‘md% = ATyp — ATyr (4.73)

where ATy is the incremental change in torque transmitted through the
shaft to the LP turbine. This is modeled as a stiff spring;:

ATHL = _KHL(A(;LP — A(;Hp). (4.74)
The reheat process has a time delay that can be modeled similarly as
dAP,
TRH dtRH —APRH + (1 — KHP)APCH (4.75)

where APgrp is the change in output power of the reheater. Assuming that
this output is totally converted into torque on the LP turbine,

ATrp = APgg. (4.76)

The dynamics of the LP turbine mass in incremental scaled variables are
dAdiLP = Awpp (4.77)
2];[5” dA:t“’ = ATyp + ATrp — ATy (4.78)

where the torque to the connection of the LP turbine to the synchronous
machine is assumed to be transmitted through a stiff spring as

ATy = —Kpy(Ad—Adrp). (4.79)
For operation near an equilibrium point (denoted by superscript o) with
Pen = Py, Tpp=Thr = KupPoy = —Kur(6ip — %p),

Tip = Pry = (1 — Kup)Pop, wip=ws, Wip =ws,
TR = Péy=—-KLm(6° —dgp) (4.80)
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the actual variables are

Pog = Pg’H + APcy (4.81)
Psy = P§, + APgsy (4.82)
dgp = Opp+ Admp (4.83)
wgp = Wyp+ Awgp (4.84)
Pry = P%y + APgy (4.85)
orp = 0ip+Adrp (4.86)
wrp = wip+Awrp (4.87)
b = 4+ A0 (4.88)
Ty = TS + ATy (4.89)

The steam turbine model written in actual per-unit torques (but valid only
for small changes about an equilibrium point) is written as

dP,
Ton d(ZH = —Pom+ Psy (4.90)
dCZZP — wpp — w, (4.91)
2Hypd
WHP O;I:P = KyxpPog+ KHL((sLP - 5HP) (4'92)
dP,
Tro dI:H = —Pru+ (1 —Kgyp)Pon (4.93)
dc;LtP — wip—w, (4.94)
2Hp d
—LE Zip = —Kur(rp —6up) + Pri + Kpa(6 — dLp) (4.95)

and Ty in the synchronous machine speed equation must be replaced by
Ty = —Kpu(d—0rp). (4.96)

The steam valve position Pgy will become a dynamic state when the steam-
governor equations are added.
For rigid shaft couplings

KHPPCH = TM_PRH (4.97)

and the two turbine masses are added into the synchronous machine inertia
to give the following steam turbine model with T, as a dynamic state:



82 CHAPTER 4. SYNCHRONOUS MACHINE CONTROL MODELS

T KppT,
Tan M — 4 - Baeleayp o
dt Tor
KppT,
4 AP RH P, (4.98)
Ten
dP,
Ten diH = — Pog + Psy (4.99)

and T)s remains as a state in the synchronous machine model. It is possible
to add more reheat stages and additional details. It is also possible to further
simplify.

For a nonreheat system, simply set Tpry = 0 in (4.98)-(4.99), and the
following model is obtained:

dT
Ten—g = —Tur + Psv (4.100)

where again T); remains a state in the synchronous machine model and Pgy
will become a state when the governor is added. The above non-reheat model
is often referred to as a Type A steam turbine model [59, 60].

4.5 Speed Governor Models

The prime mover provides the mechanism for controlling the synchronous
machine speed and, hence, terminal voltage frequency. To automatically
control speed (and therefore frequency), a device must sense either speed or
frequency in such a way that comparison with a desired value can be used
to create an error signal to take corrective action. In order to give a physical
feeling to the governor process, we will derive the dynamics of what could be
considered a crude (and yet practical) mechanical hydraulic governor. This
illustration and the derivation were originally given by Elgerd in [61].
Figure 4.6 gives a simple schematic of a flyball speed sensor with ideal
linkage to a hydraulic amplifier and piston for main valve control. Suppose
that the distance of points a and e from a fixed higher horizontal reference
are related to the per-unit values of a power change setting Po and value
power Pgy, respectively. To see how the flyball functions for some fixed
P¢, suppose that a load is removed from the generator such that an excess
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Figure 4.6: Mechanical-hydraulic speed governor [61]

of power is being supplied to the turbine through the valve. This excess
power will cause a change in generator speed Aw, which will increase the
velocity of the flyballs and hence lower point b. Lowering point b results
in a lowering of point ¢ since they are assumed to be connected by a rigid
rod. Lowering point ¢ must either lower d (if e does not change) or raise
e (if d does not change). If point d is lowered, the high-pressure fluid will
enter the hydraulic servo through the lower channel and exert a force on the
main piston to move up point e. Thus, in any case, lowering c results in a
raising of e and a corresponding decrease in Pgy. The decrease in Pgy will
eventually stop the increase in speed that initiated the movement of point b.
To model this action, we analyze the linkages and note that any incremental
change in the positions of points a, b, and ¢ are related by

Ayp = KpAyo + KpeAye. (4.101)
Any incremental change in the position of points ¢, d, and e are related by

Ays = KacAye + KieAye. (4.102)
The position of point a is related to the scaled value of P¢ so that

APe = K.Ay,. (4.103)
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Neglecting the flyball dynamics, the position of point b changes in proportion
to a change in electrical speed as

Aw = wsKpAy,. (4.104)

A change in the position of point d affects the position of point e through
the time delay associated with the fluid in the servo. We assume a linear

dynamic response for this time delay:
dAy,
—dty —K.Ayq. (4.105)

Substituting the linkage relations in terms of the power change setting and
the speed change:

dAy,
dt

= _Ke(chAyc + KdeAye)

Ayp — Kpa Ay,
= _Kech (be—bby) - KeKdeAye

_Kech Aw KechKba
Kchb Ws Kcha

APc — K KgAy,. (4.106)

Using the proportionality between APgy and Ay, as

Ay, = ———AP, 4.1
Y KdeKcha 5V ( 07)
and defining
Ky K, s
droop = ;{ b (;—) (4.108)
a ™
A 1
Tsy = K, (4.109)

the incremental governor model is

dAPsy
y——"

T
SV

A
= —APgy + AP — (“’7> Y (4.110)
2wdroop /) ws
The quantity “droop” is a speed droop expressed in Hz/per-unit megawatts.
Alternatively, we define a speed regulation quantity Rp as
2md
Ry & ZTEoop (4.111)

Ws
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For operation near an equilibrium point (denoted by superscript o) with

P% = Pg +i<”—0—1) (4.112)
C vy \ o .

the actual per-unit variables are

Psy = ng + APgy (4.113)
P = ng + APgo (4.114)
w = w’+Aw. (4.115)

In these variables, the governor model including limits on the value position
is

dPSV 1 w
T = —-P Po——(— -1 4.116
SV sv + fFo R <ws > ( )

0 < Pgy < PR (4.117)

In addition to the limit on the valve position Pgy, it may also be important
to constrain the derivative of Pgy as rate limits. If this is done, the above
model corresponds to a General Electric type EH [59].

This model is not valid for large changes, but to illustrate the significance
of Po and Rp, suppose that the machine is unloaded with Pgy = P. = 0.
If Po is left at 0 and the machine is loaded to its rating (Psy = 1), the full
load speed would be (1 — Rp)ws. So, if the speed regulation is set for 5%
droop (Rp = 0.05), the change in speed between no load and full load would
be 5% of the rated load. Thus, Rp can be written as

% droop

Fp 100

(4.118)
The quantity Po is a control input that can be either a constant, or the
output of an automatic generation control (AGC) scheme. To provide zero
steady-state error in speed (and therefore frequency), an integral control is
needed. In multimachine power systems, this load frequency control (LFC)
is used together with economic dispatch to maintain frequency at minimum
cost on an areawide and systemwide basis. In this case, Po would be the
output of a load reference motor, which is driven by an AGC signal based
on a unit control error. While this control ideally would maintain rated
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frequency in steady state, the accumulated error during transients makes
it necessary to have time corrections whenever the total accumulated time
error passes a specified threshold [61]. These controls involve fuel and boiler
dynamics that are often considered slow enough to be constants.

4.6 Problems

4.1 Using the steady-state exciter model of (4.20) and (4.22) with Kg = 1.0,
VRmax = 8.0, SEmax = 0.9, S0.75max = 0.5 (all pu), find F¢gmax,
A, and B,.

4.2 Using the exciter model of (4.46) with Kp = 1.0, Sg = 0, and Tp =
0.5 sec, compute the response of E; for a constant input of Vi = 1.0.
Use an initial value of E¢q = 0 (all pu).

4.3 Using the exciter model of (4.18) and (4.22) with Vg = Vyes = 0.05,
find KEself so that Erq = 1.0 when A, = 0.1 and B, = 0.6 (all pu).

4.4 Using the answer to Problem 4.3, compute the response of E 4 for T =
0.5 sec when it starts at zero. This requires the solution of a nonlinear
differential equation.

4.5 Using the excitation system models of (4.46)—(4.49), construct a block
diagram in the Laplace domain that shows the control system with
inputs V,.o¢ and V3, and output Eyg.

4.6 Repeat Problem 4.5 using Vr as a dynamic state, rather than Ry.

4.7 Starting with the dynamic model of (4.46)—(4.49), derive the following
dynamic model (a fast static exciter/regulator):
dFE fd

T 0t :—Efd—l-K(Vref—V;g).

4.8 Using the turbine/governor model of (4.100) and (4.116), with

Tsy =02sec Po=0.7Tpu Rp=0.05pu
Teg = 0.4sec ws =27 60r/s
(a) Find the steady-state values of Psy and Ty if w = 376.9 r/s.

(b) Find the dynamic response of Pgy and T)s if w changes at time
zero to be 376.8 r/s.



Chapter 5

SINGLE-MACHINE
DYNAMIC MODELS

5.1 Terminal Constraints

Throughout Chapters 3 and 4, the constraints on Iy, Iy, I, and Vg, V, V,
have been left unspecified. Perhaps the simplest terminal constraint that
could be specified is that of an ideal balanced three-phase resistive load
(R)paq in per unit). This terminal constraint is

Vd = Ideoad (Rload < OO) (51)
Vo = IiBioad  (Bigaq < ) (5.2)
Vo = LRjgaq (Ripaq < 0) (5.3)
and
[d = Iq =1y = 0 (Rload = OO) (54)

The most commonly used terminal constraint for a single machine is the
notorious infinite bus. In most power engineering terminology, an infinite bus
is an ideal sinusoidal voltage source with constant magnitude, frequency, and
phase. In three-phase systems, this implies an ideal balanced symmetrical
three-phase set such as

Vo = V2Vicos(wst + 0y5) (5.5)
2

Vi = V2V, cos <wst + 0ys — %) (5.6)
2w

V. = V2V,cos (wst + Oy + ?) ) (5.7)

87
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This is a positive phase sequence (ABC') set written in per-unit so that Vs =
1.0 for rated voltage and ws = 27 f, for rated frequency fs. In many studies,
f,s is arbitrarily selected as zero. It is useful to know how a synchronous
machine dynamic model can be made into an infinite bus. We begin by using
the dynamic models of (3.148)—(3.159), (4.46)—(4.49), (4.100,) and (4.116)-
(4.117) with V; defined through (4.43) and (4.44). As discussed earlier, the
“a phase” voltage of the machine during transients and steady state is

\%
Vo= V2,/V?+ V2 cos (wst +0— g + tan 1 ﬁ) (5.8)

To qualify as an infinite bus, we must have

Vi + V2=V (aconstant) (5.9)

and

v
§— = ftant L = Ovso (@ constant) (5.10)
2 Vy
Clearly, we must find parameter values that result in constants V4, V;, and
d.
Considering the voltage magnitude first, there are two ways in which
VVE+ qu can be made a constant. The first involves an infinitely high-

gain voltage regulator with an infinitely fast amplifier and exciter. This
makes the field winding flux linkage infinitely fast so that V; is constant for
all disturbances This method, however, does not constrain Vy and V; to be
individually constant, and thus there is no way to force 6, to be constant.
The second way to force the terminal voltage magnitude to be constant is
actually the opposite of the high-gain regulator approach. Rather than force
the field winding to be infinitely fast, we force it to be infinitely slow by
letting T, equal infinity. In addition, we let Ty, go to infinity as well as the
machine inertia H. To complete the infinite bus specifications, we let Rg,
X}, X, Ty, and Ty, be zero. To see the result, we write the model (3.148)
—(3.159) with these parameters:

1 dwdoo Woo

- = Yo+ Vi 5.11
b dt o VYgoo + Va (5.11)
1 d¢qw Woo

— = - o+ Vieo 5.12
w. dt ws T,Z)d + Vq ( )
1 dposo

L W _ (5.13)

wg dt
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dE!

e 14
o 0 (5.14)
dE),

o 1
= 0 (5.15)
Ao
dwse
—= =0 (5.17)
Vico = Egoo (5.18)
Yoo = —FEioo (5.19)

For ws(0) = ws, this model requires

E;OO = E('ZOO(O) (5.20)
Eio = FEgso(0) (5.21)
oo = 0x0(0) (5.22)
Vico = FEyoo(0) (5.23)
Ygoo = —Egss(0) (5.24)
which then gives
Vico = Eys(0) (5.25)
Vie = Ejng(0) (5.26)

which satisfies the requirements of an infinite bus.
Consider the model of a synchronous machine connected to an infinite
bus through a balanced three-phase line in unscaled parameters:

dXeq
Vg = —lgle— i + V20, cos(wst + Gys) (5.27)
de 2
vp = —ipTe — dtb + \/5115 cos <wst + Ops — ?ﬂ) (5.28)
dAee 2
Ve = —icTe — + V20, cos (wst + 0ys + —F> (5.29)
dt 3
with
)\ea LES Lem Lem 2’(1
Mb | = | Lem Les Lem | | @ |- (5.30)
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Transformation and scaling consistent with Chapter 3 give the following
terminal constraints in per-unit:

_ w 1 dwed .
Vi = R.Iz;+ w—szbeq T dl + Visin(d — Oys) (5.31)
B w 1 dipeg
Vo = Rel;— w—s¢ed T + Vi cos(d — 0ys) (5.32)
1 dipeo
o - eIo - .
V. R o dt (5.33)
with
¢ed = Xep(_ld) (5.34)
Yeqg = Xep(_lq) (5.35)
¢eo = Xeo(_lo)- (5.36)

Note that V; is the RM S per-unit infinite bus voltage, and all quantities are
scaled on the machine ratings. It is customary to set 6, equal to zero, since
one angle in any system can always be arbitrarily selected as a reference for
all other angles. We will leave this angle as 6, for now.

While other terminal constraints can be specified, the infinite bus is the
most widely used for single-machine analysis, partly because it has been
traditional to study a single generator with the entire remaining network
as a Thevenin equivalent impedance and voltage source. Such equivalents
are clearly valid only for some steady-state conditions. Other uses of infinite
bus models for machines have arisen recently as mechanisms for avoiding the
problems associated with a reference angle and steady-state speed. Clearly,
with an infinite bus in a system, the steady-state speed for synchronous ma-
chines must be w;, and the reference angle is conveniently specified. Because
of their wide use, the remainder of this chapter is devoted to the analysis
of single-machine infinite bus systems. It is also useful for illustrating sev-
eral concepts of time scales in synchronous machines that will help in the
extension to multimachine systems.

While the following sections are written to follow naturally, the Appendix
gives an introduction to integral manifolds and singular perturbation, and
provides the basic fundamentals used in the following sections to develop
reduced-order models.
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5.2 The Multi-Time-Scale Model

In this section, we study the special case of a single machine connected to an
infinite bus. In particular, we use the synchronous machine model of (3.148)—
(3.159), the exciter/AVR model of (4.46)—(4.49) without load compensation,
the turbine/governor model of (4.100) and (4.116)—(4.117), and the terminal
constraint of (5.31)—(5.33) and (5.34)—(5.36). Before combining these, we
introduce the following scaled speed and time constant

Wy 2 Ts(w — ws) (5.37)
2H
T, 2 (5.38)
Ws
and the parameter
Al
= 5.39
= (5:9)

where we assume that H is large enough so that
e << Ts. (5.40)

We also combine the machine and line flux linkages and parameters as fol-
lows:

Yie 2 a + Veds Vge = g+ ey Yoo = Yo + Vo,
Xao £ Xa+ Xeps Xge 2 Xy + Xepy X 2 X5+ Xop,
Xpo & X)+ Xepy X, 2 X[+ Xopy X[l 2 X+ X,
Ree 2 Ry + Re | Xose 2 Xy + Xop. (5.41)

Substituting (5.31)—(5.33) into (3.148)—(3.159) and adding the other dy-
namic models give the following multi-time-scale model:

edgje = Relg+ (1 + Tiwt> Pge + Vssin(d — Oys) (5.42)
dwqe €

€ = Rely— (14 7wt | Yae + Vscos(d — Oys) (5.43)
dt T

edwoe Reel, (5.44)

dt
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dE’
T gy

et
, dE),
1 dt

dia
" q
Tao dt
ds
dt
dwy
dt

wde

Vge
woe

V}rznin <

wed

Tzz)eq
dT'y

T7 -
CH dt
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/ / Xél - Xcll/ /
—Ey — (Xa— Xg) [1a— m(¢1d + (Xg — Xes)1a
d s
—E;)} + Eyq (5.45)
—1a + By — (X — Xos) g (5.46)
X/ _ X//
—Ej+ (X, — X)) l[q — ﬁwzq + (X — Xo) I,
q S
+Eg)] (5.47)
oy — Bl — (X! — Xpo), (5.48)
wi (5.49)
Ty — (wdelq - ¢qeld) - TFW (5.50)
X// - X ) (X/ _ X//)
x 1,4+ Kl = Xe) g d__d 51
deld (Xc/l — Xy) i (Xc/l - XKS)wld (5:51)
(Xl/ _ XZS) (Xl _ X/l)
X//I q E/ q q .
ol Xy X T Ry X 522
_Xoe[o (553)
—(Kg + Sp(Efd))Epa + Vr (5.54)
K
Ry + =L Eyq (5.55)
Tp
KsK
Vi + KaR; — ~22E Ery + Ka(Vyog — Vi) (5.56)
Vr < Ve 5.57)
Sz Ve (5.59)
€ d¢ed .
RJI;+ 1+ W YPeq — € pn + Visin(d — Oys) (5.59)
die
R.I, — <1 - Ti“’t) Yed — € Z’tq + Vscos(d —bys)  (5.60)
—Xepld (5.61)
X1, (5.62)
—Tm + Psy (5.63)
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dPsy Wi
T = —P Po —
SV sy + Fo — € RoTs

0 < Pgy < PR, (5.65)

This model could be put in closed form without algebraic equations by solv-
ing (5.51)—(5.53) and (5.61)—(5.62) for Iy, Iy, I, teq, and 1¢, and substitut-
ing into the remaining differential equations, and by replacing the derivative
terms in (5.59) and (5.60) with their respective functions, and substitution
into (5.58) and (5.56).

This single-machine/infinite bus model has several classifications of dy-
namic time scales. The stator transients of 14, and v, are very fast relative
to other dynamics. This shows up in the model as a small “time constant” €
multiplying their derivatives. The damper flux linkages 114 and 1)y, are also
quite fast, since Ty, and T, typically are quite small. The voltage regulator
states Eyq and Vg tend to be fast because Tz and T4 are typically small.
The field winding and rate feedback states E’(’Z7 Ry tend to be slow because
Téo and Tr can be relatively large. The turbine/governor states Ty, Psy
tend to be slow because Toy and Ty can be relatively large. This can be
countered, however, by a small speed regulation Rp. The damper-winding
flux linkage E/, can be either fast or slow, depending on T, (;O. These classi-
fications should be considered as general rule-of-thumb guidelines, and not
absolute characteristics. The actual time-scale classification for a specific
set of data can be quite different than that stated above, and can change
between load levels.

The time-scale characteristics of a model are important since they deter-
mine the step size required in a time simulation. If a model contains fast
dynamics, a small step size is needed. If the phenomenon of interest in a
time simulation is known to be a predominantly average or slow response, it
would be very helpful if the fast dynamics could be eliminated. They must
be eliminated properly, so that their effect on the slower phenomena of inter-
est is still preserved. Only in rare cases can fast dynamics be “eliminated”
exactly. One such case is given in the next section.

5.3 Elimination of Stator/Network Transients

We begin this section by considering the special case of zero stator and
network resistance. For this special (although common) assumption, (5.42)—
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(5.44) and (5.49) are

edjfe - <1 + Tiswt> Yae + Vesin(d — Oys) (5.66)
edgfe - (1 + Tiswt> Wbae + Vs co8(8 — Bys) (5.67)
Edzj;e =0 (5.68)
TS% . (5.69)

The first three differential equations have an explicit solution in terms of 4:

wde = V:s COS((S - 0’!)8) (570)
wqe = _‘/s sin(5 - 91)5) (571)
Yoe = 0. (5.72)

This can be verified by substituting (5.70)—(5.72) into (5.66)—(5.69) and ob-
serving an exact identity. If the initial conditions on g, ¥ge, Yoe, and 6
satisfy (5.70)—(5.72), then g, Vg, and 1, are related to § through (5.70)—
(5.72) for all time. This makes (5.70)—(5.72) an integral manifold for v,
ge, and e. If the initial conditions do not satisfy (5.70)—(5.72) (the sys-
tem starts off the manifold), there is still an exact explicit solution for ¢4,
Yge, and 1, as a function of 0 and time ¢. This interesting fact about syn-
chronous machine stator transients has been explained in considerable detail
in [63] through [65]. The result is as follows. For any initial conditions 9§,
Yges Yoes 0°, to and for any €, the exact solutions of the differential equations
(5.66)—(5.68) are

Yge = c1cos(wst+ 06— ca)+ Vscos(d — Oys) (5.73)
Yge = —cyrsin(wst +0 —c) — Visin(d — b,) (5.74)
Yoe = €3 (575)
with
1 = [(9, — Vicos(6° — Bys))* + (Yge + Visin(0? — 01,5))2]% (5.76)
1 Y8+ Visin(6° — Oys)
= Wt + 0% +tant | L :
2 wsto + 07 4 tan <7X)§e V. cos(0° — 0y (5.77)

3 = Y. (5.78)
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Clearly, if the initial conditions are on the manifold (satisfy (5.70)—(5.72)),
this solution simplifies to the manifold itself ((5.70)—(5.72)). We emphasize
that this interesting solution is valid for any €, and requires only R, = 0.
This solution does, however, show the importance of Rgs. If the initial
condition is off the manifold, the exact solution of (5.73)—(5.75) reveals a
sustained oscillation in 4. and 14, which means that the machine will never
reach a constant speed equilibrium condition. Evidently, the resistance acts
to damp out this oscillation in the actual model, keeping R..

When resistance R, is not zero, an integral manifold for 14, ¥¢e, and 1e
has been shown to exist only for the case in which € is sufficiently small [63]-
[65]. A first approximation of this integral manifold (keeping Rs.) can be
found by setting € equal to zero on the left-hand side of (5.42)—(5.65) and
solving the algebraic equations on the right-hand side for ¥4, ¥4 and 1, as
functions of all remaining dynamic states. As a matter of consistency, € can
also be set to zero on the right-hand side of (5.42)—(5.65). In either case, the
resulting reduced-order model should approximate the exact model up to an
“order €” error [66, 67]. If the € in (5.64) is set to zero, the turbine/governor
dynamics would no longer depend on shaft speed. It could be argued that
since Rp is usually also quite small, the ratio of ¢/Rp should be kept and,
thus, keep governor dynamics. For e sufficiently small, this reduced-order
model can be improved to virtually any order of accuracy (see Appendix).

It is customary to set € equal to zero in (5.42)—(5.44) and (5.59)—(5.60)
to give the following approximation of the exact stator transients integral
manifold written together with the original algebraic equations for currents:

= Rgelg+ ge + Vssin(o — ys) (5.79)
= Rgely —ge + Vicos(6 — Oys) (5.80)
= Ry, (5.81)
X/l X ) (X/ _ Xl/)
. = _X// I ( d ls E/ d d . 2
v Wt x X e O
(X// _ XZS) (X/ _ X//)
. = —XII, -1 B+ ot 4 .
1/}‘1 qge~q (X(/Z - st) d + (X{] o ng)th (5 83)
¢oe = —Xoelo. (5.84)

These six algebraic equations clearly can be solved for the six variables 4.,
Vger Yoes 1a; 1g, and I, as functions of 6, By, Ejj, Y14, and g If Ry is equal
to zero, this approximation of the integral manifold becomes exact (compare
(5.70)—(5.72) and (5.79)—(5.84)).
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With the above results, the dynamic model has been reduced from a
l4th-order model to an 1lth-order model. The solution of (5.79)—(5.84)
for 1. and I, is trivial, and 4., ¥4 can be eliminated, leaving only two
equations to be solved for I; and I, as functions of 9, E;, E/, na, and toq:

(Xl/ _ XZS) (Xl _ X/l)
= Reelqg— X 1, — —2 E, T
e S T R P A
+Vssin(d — Oys) (5.85)
(Xg — Xes) 0 (X5 —X7)
= Rel,+ X1 E —
E s S 6 A 7 R B o
+Vscos(d — Oys) (5.86)

These two real equations can be used to solve for I; and I,. They can
also be used to make one complex equation and an interesting “dynamic”
circuit. Adding (5.85) plus j times (5.86) and multiplying by e?(=7/2) give
the following “circuit” equation:
H(&;’—X&) (XL XD

E

" "
(X! — Xys) ¢ (X! — Xzs)%q (X - Xd)lq]
q q

(Xc/l/ B XZS)E/

| (
a —xe et (x
)
Jelt

Xd X/ ))¢1dH I (6-7/2)

= (Rs + jX}1)(Ia+ jI,)e? /%)
+(Re + jXep)(Ig 4 j1,)e?07™2) 4y 0% (5.87)
From (5.58)—(5.60) with ¢ = 0,
Vi = \JVi+V? (5.88)
Vi = Rely— Xeply + Vesin(d — 6,,) (5.89)
Vi = Rely+ Xeplg+ Vicos(d — Oys) (5.90)

These last two equations can be written as one complex equation.
(Vg + jV)e? O/ = (R, + jXop)(Ig + §I,)e? ™2 4 Vel (5.91)

Equations (5.87) and (5.91) can be expressed as a “dynamic equivalent cir-
cuit” with a controlled source voltage behind X/, as shown in Figure 5.1.
This circuit does not imply anything about steady state, but merely reflects
the consequence of setting ¢ = 0 in the original full dynamic model. Such
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( atily) e/&-12) X7 Ry R, IXep

, o Vg s
[ XgX ) , XX )

(Vy+jV,) e®2)
7 d— 7
X g Xy XgX 1) 2

+(Xg-XD1,]

XX ) e (g oX d)_
XaX 1) 1 XaX \)

] o(3-T12)
Figure 5.1: Synchronous machine sub-transient dynamic circuit

a circuit is clearly not a unique representation of these algebraic equations.
Many other similar circuits can be created by simply adding or subtracting
reactances in the line and modifying the internal “source” accordingly [68].

An interesting and useful observation about this circuit is that the “real
power from the internal source” is exactly equal to the electrical torque in

the air gap (TELEC)'

(X‘/]/ — Xys) (X X//) ., )
= | = FEy— e + (X — X)) | T,
drom, l(X'—Xes) T (x)— )1/}2‘1 (Xg = Xa)g| 1a

VW Xis) g (X4 = XJ)

X &QQ<&=@W41

From (5.44) and (5.82) to (5.83):

_ (X = Xe) oy (Xg = Xg)
TgrLec = [ X 1q+ (Xé—Xes)E (X, — )Tﬂld]
" (Xl/ _ st) (Xl
- [_X fa= (XZ — Xys) (X — Xq )%q] fa

These are clearly equal, since the reactances X, and X, each contain X,.

The final form of this model that has eliminated the stator/network
transients by setting e = 0 on the left and right sides of (5.42)—(5.65) (except
for (5.64), where we have chosen to keep the governor by arguing that Rp
can be small) can be written in terms of the original variables as

d /
T, = B~ (X4 X))
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dip14
T//
do dt
dE'
! d
Tao dt

" d¢2q
Too dt

dé

dt

2H dw

ws dt

dE fd

dt
dR;
T _J
=0
dVi
T _
At
ATy

T7 -
CH dt

dPsy
dt

TE

Tsv

X/ _ Xl/
Ij— —4 —d_ Xh— X1,
[ 'Y _XZS)Q(%CH-( d — Xes)1a
~E))| + Eygq

—1q + By — (X — Xos) g

—Ey+ (Xg — Xy)
l X X7
(X — Xus)

—thag — By — (Xg — Xus) 1,

W — Ws
(X — Xes) 1y (X — X7)
Ty ———-°%—F1I, — %%
M (Xc/l - ng) i (Xc/l - ng)
( (lll _ XZS) (X/ _ Xl/)
_rX 49 "= pr AN I
SYESRRANCVES A
—(X§ — Xi)aly — Trw
—(KE + SE(Efd))Efd + Vg
Kp
— —F
Ry + Ty fd
K K
—VR—I-KARf— A FEfd—I-KA(V
—T + Psy

1 w
_PSV+PC_R—D(M__1>

with the limit constraints

VR < VR S VR

0 < Pgy < Pgi?™*

1 2 (Tzz)2q + (Xz/] - Xés)Iq + Eél)
s

wldlq

ref — Vi)
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(5.92)

(5.93)

(5.94)

(5.95)

(5.96)

(5.97)
(5.98)

(5.99)
(5.100)

(5.101)

(5.102)

(5.103)
(5.104)

and the required algebraic equations, which come from the circuit of Fig-
ure 5.1, or the solution of the following for I, I:

0 = (Rs+ Re)ly— (X('Z’ + Xep)l,
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(X// _ ng) (X/ _ X//) .
_ (Xq, X, )E&Jr (X?_Xj )¢2q + V,sin(8 — 0ys)  (5.105)
q s q s
0 = (Rs+Re)lg+ (Xc/l/ + Xep)la
X" _ X < X' — x"
S = X)X d)%d+ww%®—ﬂm)(5m®

(X, — Xes) T (X] — Xus)
and then substitution into the following equations for Vy, Vi:

Vi = Rely— Xepl, + Visin(s — Oys) (5.107)
Vi = Rely+ Xeplg+ Vicos(d — Oys) (5.108)

and finally

V= /VZ+ V2. (5.109)

The quantities V¢ and P¢ remain as inputs.

5.4 The Two-Axis Model

The reduced-order model obtained in the last section still contains the damper-
winding dynamics 114 and v9q. If Ty, and T, are sufficiently small, there is
an integral manifold for these dynamic states. A first approximation of the
fast damper-winding integral manifold is found by setting T}, and T}, equal
to zero in (5.92)—(5.109) to obtain
0 = —Yg+E,— (X5 — Xes)Ia (5.110)
0 = —thog— Eg— (X — Xes)1y. (5.111)
When used to eliminate 114 and 9, in (5.107), the equations for I; and I,
become
= (Rs+ Re)lg— (X] + Xep) Iy — Ej+ Visin(6 — 0,s)  (5.112)
= (Rs+ Re)ly + (Xi+ Xep)Ia — Ej + Vi cos(6 — 0y). (5.113)
As in the last section, these two real equations can be written as one complex
equation:
(B + (Xg = Xa) g+ jE)e! %)
= (Rs + jX0) (L + )’
+(Re + jXep)(La + qu)ej((S_ )
+ Vel (5.114)

[SERNE]
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The equations for V; and V,, remain the same as in the last section so that the
circuit of Figure 5.2 can be constructed to reflect the algebraic constraints

(Ug+ 1) e®nn  Xd R Re  jXep
+
(E;+ (X, — X)L, +jE}] i@ G)v &Os
d q~ 2dMq q V% Vg + qu) £J(8-1/2) =/

Figure 5.2: ynchronous machine two-axis dynamic circuit

for this two-axis model. It is easy to verify that, as in the last section, the
“real power from” the internal source is exactly equal to the electrical torque
across the air gap (Tprpc) for this model.

The final form of this two-axis model, which has eliminated the sta-
tor/network and fast damper winding dynamics, is obtained by substituting
(5.110) and (5.111) into (5.92)—(5.109) to eliminate 114 and )aq:

dE!
Toogp = By~ (Xa—Xa)la+ Eya (5.115)
dE,
Tooqg = ~Hat(Xo= Xl (5.116)
ds
a - YT (5.117)
2H dw
Soar = D Bl = Eyly = (X0 = X aly = Trw - (5:118)
dE
Tg d;cd — —(KE+SE(Efd))Efd+VR (5.119)
de KF
o - Ttk 5.120
rr o (5.120)
dV; KK
TAd—tR = ~Vi+KaRp — —5—TEpa+ Ka(Viey — Vi) (5.121)
T
Ten=—gy- = ~Tu+Psv (5.122)

dPSV 1 w
T = —-P Po——(— -1 12
sV sy + Pc R (ws ) (5.123)
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with the limit constraints
VR < VR < Ve (5.124)
0 < Poy < PR (5.125)

and the required algebraic equations, which come from the circuit of Fig-
ure 5.2, or the solution of the following for I, I:

0 = (Rs+ Re)lq— (X, + Xep)ly — Eg+ Visin(d — 6,)  (5.126)
0 = (Rs+ Re)Iy+ (Xg+ Xep)lg — Ej 4 Vicos(d — by)  (5.127)
and then substitution into the following equations for V; and V;:

Vi = Relg— Xeply + Vssin(6 — 0ys) (5.128)
Vi = Rely+ Xeplg+ Vicos(0 — 0,) (5.129)

Vi = JV2+v2 (5.130)

The quantities V,..f and Po remain as inputs.

and finally

5.5 The One-Axis (Flux-Decay) Model

The reduced-order model obtained in the last section still contains the damper-
winding dynamics E;. If Téo is sufficiently small, there is an integral manifold
for this dynamic state also. A first approximation of this fast damper wind-
ing integral manifold is found by setting T}, equal to zero in (5.115)(5.130)
to obtain

0 = —Ej+(X,— X)), (5.131)

When used to eliminate E/ in (5.115)—(5.130), the equations for I; and I,
then become

0 = (Re+ Re)lg— (Xg+ Xep)Ig+ Visin(6 — 0,s) (5.132)
0 = (Rs+ Re)Iy+ (Xg+ Xep)lg — Ej 4 Vicos(0 — bys). (5.133)
As in the last sections, these two real equations can be written as one complex
equation:
[(Xq - Xz/i)Iq + jEZ;]ej((s_ﬂﬂ) =
(Rs + i X5)(Ig + jI,)e®=™/?)
+(Re + § Xep) (g + 51,)eC™2) 4 Vyedfos (5.134)
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The equations for V3 and V, remain the same as in the last sections, so
that the circuit of Figure 5.3 can be constructed to reflect the algebraic

g+ j1,) @72 jXy Ry R, FXep
+
[(X, - X1, +E}] e/3-12) J_“> . (*_D Vg elOvs
(Vg +jV,) &7

Figure 5.3: Synchronous machine one-axis dynamic circuit

constraints for this one-axis model. It is easy to verify that, as in the last
two sections, the “real power from” the internal source is exactly equal to
the electrical torque across the air gap (T'grrc) for this model.

The final form of this one-axis model, which has eliminated the sta-
tor/network and all three fast damper-winding dynamics, is obtained by
substituting (5.131) into (5.115)—(5.130) to eliminate E:

| dE! , /
Tooge = ~Fo= Ka=Xo)la+ Epg (5.135)
do
a YT (5.136)
2H dw
oo = D= Egly = (Xq = Xo)laly — Trw (5.137)
=g = ~(Be+Se(Era))Era+ VR (5.138)
de KF
g = Rtk 1
i By+ 7 -Fra (5.139)
dv KK
TAd—tR — Vet KaR;— 2L B4 Ka(Voes — Vi) (5.140)
dT,
Ten=gy- = ~Tu+ Psv (5.141)
dPSV 1 (w )
g = Psvt+Po-p-|-—1 5.142
SVt sv ++c Rp \wq ( )

with the limit constraints

VN < Y < Vex (5.143)
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0 < Pgy < Pmax (5.144)

and the required algebraic equations, which come from the circuit of Fig-
ure 5.3, or the solution of the following equations for I, I;:

0 = (Re+Ro)lg— (Xg+ Xep)Iy + Visin(o — 0ys) (5.145)
= (Rs+ Re)ly+ (X + Xep)Ia — Ey + Vicos(d — 0s)  (5.146)

and then substitution into the following equations for Vy, Vi:

Vi = Relg— Xeply + Vssin(6 — 0ys) (5.147)
Vo = Rely+ Xeplg+ Vicos(0 — 6,) (5.148)

and finally

Vi = JVi+V2 (5.149)

The quantities V¢ and P¢ remain as inputs.

5.6 The Classical Model

The classical model is the simplest of all the synchronous machine models,
but it is the hardest to justify. In an effort to derive its basis, we first
state what it is. In reference to all of the dynamic circuits of this chapter,
the classical model is also called the constant voltage behind the transient
reactance (X)) model. Return to the two-axis dynamic circuit Figure 5.2
and the dynamic model of (5.115)-(5.130). Rather than assuming T, = 0,
as in the last section, assume that an integral manifold exists for £}, E;, Eyq,
Ry, and Vg, which, as a first approximation, gives E; equal to a constant
and (B} + (X, — X})1,) equal to a constant. For this constant based on the
initial values Ej, I7, and E;’, we define the constant voltage

2 &\ + (X = X1+ (Ep)? (5.150)

and the constant angle

/o
Eq

§° £ tan~!
g X

— fracm2. (5.151)

The classical model dynamic circuit is shown in Figure 5.4. Because the
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J'Xé! R Re J Xep

N

_J“(‘Y“(‘\_/\/\,\/_‘_/\/\,\,_KYY'Y'\_

F0 j(3+8) <j> <i> Vg e/

Figure 5.4: Synchronous machine classical model dynamic circuit

classical model is usually used with the assumption of constant shaft torque
(initial T§;) and zero resistance, we assume

Teg = oo, R;+R. = 0 (5.152)
and define

5 5+ 8. (5.153)

classical
The classical model is then a second-order system:

dé

claculstsical = w—w, (5.154)
2H dw o E"V .
ot = T g gy M Celassial —Oue) = Trw (5159

This classical model can also be obtained formally from the two-axis model
by setting X = X and Tog = Ty, = T}, = oo, or from the one-axis model
by setting X, = X}, Ty, = 0, and Toy = T}, = oc. In the latter case, 6" is
equal to zero, so that 0.],4qical 15 €qual to d and E’° is equal to E{;’.

5.7 Damping Torques

The dynamic models proposed so far have all included a friction windage
torque term Trys. For opposition to rotation, such torque terms should
have the form

Trw = Dpww or Dpyw? (5.156)
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The literature often includes damping torque terms of the form

Tp = D(w—ws) (5.157)
or
D/
Tp = w—(w—ws). (5.158)

These damping torque terms can be positive or negative, depending on the
machine speed. Values of D’ = 1 or 2 pu have been cited as a reasonable
method to account for the turbine windage damping [62]. Such terms look
like induction motor slip torque terms, and have often been included to
model the short circuited damper windings. Thus, if damper windings are
modeled through their differential equations, then their effects need not be
added in Tp. In this case, friction can be modeled through Try, if desired.
If damper windings have been eliminated, as in the one-axis or classical
models, all of the third damping effects have been lost. To account for their
damping without including their differential equations, T'p can be added to
the torque equation (added to Try ), with D appropriately specified to ap-
proximate the damper-winding action. We now justify this damping torque
term by returning to the two-axis model of (5.115)—(5.130), which included
one damper-winding differential equation.

We would like to show that if £, is more accurately eliminated, a damping
torque term proportional to slip speed should automatically appear in the
swing equation. To show this, we propose that the integral manifold for E,
should be found more accurately. To begin, we define the small parameter
b as

p 2T, (5.159)
and propose an integral manifold for E’; of the form
Ej) = o+ pudr+ o+ (5.160)

where each ¢; is a function of all remaining dynamic states. Substituting
(5.160) into (5.116) gives

(aqbo g1 50y
7

) (-E - (Xy—-X)I;+ E T
aE(/]—i_luaE(/]—i_/j’ aE(/]—’_ )( q ( d d)d+ fd)/ do

oy 00 a0t Y,
+M<85+M&S+M g5 T )@ ws)
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ow ow ow
2H
—Ey I, — (X, — X)) 1aly — Trw)/ ( - )

T ( 9o 1 o Do

+p (a% TR i ) (Tar = (@0 + ué1 + pP2 + )y

+ + + - (Kg + Sg)Eri+ Vi) /TE

E?Efd 8Efd E?Efd )
00, 0 0
+u< %0 001, 2002 )( Rf+T—FEfd)/TF

or; Mamr;, TFar, T
0, 01 2 5¢2 > KaKp
. K — E
o <aVR v T e T ~Vrt Rally = =5 Bya
+KA(vref )) /Ta
09, 5¢1 2 3<Z>2
+ ( aT; +p 8TM 8TM ~Tn + Psv)/Tcr

8¢0 8¢1 2 65252 ) ( . L
M <5PSV * Mapsv t# O0Psy i Fsv+Fe Rp

(i - 1)) [Tsv = —(¢o + 1 + pdo + ) + (Xg — X;)I; (5.161)

Ws

where I; and I, are

(Rs + Re) (b0 + puop1 + p2pa + ... — Visin(d — 0,5)

I, =

Ay

N (X(’Z + Xep)(E:Z — Vi cos(d — 0ys))

Aq
I — (X 4+ Xep)(Po + pop1 + p2pa + ... — Vssin(A — Oy5))
q Al

N (Rs + Re)(E{] — Vscos(d — Oys))

Ay
where
A1 = (Rs+ Re)*+ (X + Xep)(X) + Xep) (5.162)

and Vg, Vg, and V; are as before. This partial differential equation may seem
difficult to solve; on the contrary, it is actually very easy to solve for ¢,,
@1, ¢2 in sequence. To see how this is done systematically, suppose that we
want the simplest possible approximation of the integral manifold. This is
0o, and is found by neglecting all y terms, giving

0 = —¢o+ (Xg—X )y |p=o- (5.163)
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To find ¢, as a function of the states, we must solve (5.162) and (5.163)
neglecting all y terms, giving

(Xg = X)) (X)) + Xep)Visin(d — 0,s)

qbo:

A
05— X8, +R>A<E Veeol6-0) o
where
Ay = (Rs+ Re)® + (Xg + Xep) (X7 + Xep)
or
b0 = fox(8)+ for(E},0). (5.165)

This is the first term of the series for the integral manifold for E/,, and is
what would be obtained if T, éo were simply set to zero. When substituted
in the remaining equations, it would not reflect any of the damping due to
this damper-winding (this is what was done in Sections 5.5 and 5.6). If we
want to recover some of the damping due to this damper-winding without
resorting to the two-axis model, we can compute ¢ by returning to (5.161)
and keeping p terms, but neglecting ;2 and higher powers of u. Note that
¢, is only a function of £, and ¢; all the partials of ¢, are zero except for
two, giving

9%,

OE,

99,
(_Etlz — (Xa — X4 |u=o +E5q)/Tj, + %(w — wy)

- . (X5 + Xep)o1
= —¢1 — (X Xq)<(R8+Re)2+(X&+§(ep)(Xr/1+Xep)>

where [; is evaluated at p = 0. This makes ¢ some function of E{I, Eyq, 0,
and w, written here as

01 = —fix(0)(w—ws) + flR(E(;, E¢q,0). (5.166)
Stopping with this level of accuracy, the integral manifold for E, is

Ej) = ¢o+pué1+0(u?) (5.167)
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where 0(142) is some error of “order” y2. In terms of the above functions, an
approximate expression for E/,, which will capture some of the damping of
the damper-winding, is
Ey = fox(0) + for(Ey, 0) — Tppf1x(8)(w — wy)
+T g0 f1r(Eqs Efas 0). (5.168)
Note that f,r and fir are zero if Ry + R. = 0. Substitution of this approx-

imation of the exact integral manifold for E/, into the two-axis model gives
the circuit of Figure 5.5 and the following differential equations.

(Id"'jlq) £j(8-1/2) iXa Ry R, HXep

+Tyof1r (Ep Efg: 8)
+ (X, = X)) 1, +jE[) el®-12)

Figure 5.5: Synchronous machine one-axis dynamic circuit with damping
term

dE!
Téod—tq = —EB;— (Xa—Xy)la+ Ega (5.169)
dd
% = W—Ws (5170)
2H dw
oo dr = D a(fox(9) + Jor(Eq 0) = Too frx (9)(w — ws)
+ T, f1r(Ey, Efa,0)) — Egly — (X, — X)1al,
—Trw (5.171)
dEfd
Te—— = —(Kg + Sg)Efd+ Ve (5.172)
dR; K
—= = —Ry+——F 5.173
rr U L (5.173)
dVR KAKF
TAW = —Vr+ KaRy— Etg+ Ka(Voog — Vi) (5.174)
dT’
Ten—p = ~Tu+ Psy (5.175)

dPgsy 1 w
T, - Psy+Po—— (<1 1
sV sy + Pc R (ws ) (5.176)
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with the limit constraints
V}I{nin
0

Vi < Viax (5.177)

<
< Py < PR (5.178)

and the required algebraic equations for I4, I, V;, which come from the
circuit of Figure 5.5 or the solution of the following equations for I, I,:
0 = (Rs+ Re)lq— (X, + Xep)ly — fox (0) — for(E,,0)
+ T30 fix (0)(w — ws) — Tgo f1r(Eq, Eta, 0)
+Vssin(d — Oys) (5.179)
0 = (Rs+Re)ly+ (X + Xep)la— E; + Vscos(d — 0ys)  (5.180)

and then substitution into the following for Vy, V;:

Vi = Relg— Xeply + Vssin(o — 0y5) (5.181)
Vi = Rely+ Xeplg+ Vicos(d — Oys) (5.182)
and finally
Vi = JVi+V? (5.183)
When R; + R, =0
X, — X/ (X! + Xep) (X, — X))
E/ q q 8- 5_9% _T/ q 7Y q q
d X, 1 X, S ) =T X, + X, )2
Vs cos(6 — Oys)(w — wy) (5.184)
which gives an accelerating torque of
T, | = T BV (0 — Oys)
accel |Rs+Re=0 = LM X'+ X, sin vs
1 1 1
= - VZ25sin2(5 — Oy
3 (X&+Xep Xq+Xep> + sin )
(Xq - XZ]) 2 2
—Trw (5.185)

The Téo term reflects the damping due to the damper-winding as a slip
torque term
(X, - X))

_ @) 2. 205 _
Tp = TqO(Xq+Xep)2‘/s cos” (0 — Oys) (w — ws). (5.186)
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This is often approximated as
Tp ~ D(w —ws) (5.187)

where D is a damping constant. The approximation of (5.187) is normally
considered valid only for small deviations about an operating point, but it
has been used for large changes as well.

5.8 Synchronous Machine Saturation

The dynamic models of (5.42)—(5.65), (5.92)(5.109), (5.115)—(5.130), (5.135)
—(5.149), and (5.154)—(5.155) began with the assumption of a linear mag-
netic circuit ((3.148)—(3.159)). To account for saturation, it is necessary

to repeat this analysis starting with (3.191)—(3.203), rather than (3.148)—
)

(3.159). Without explicit information about the saturation functions S (2 ,

552), §2), ](%), S;?, Sg), and Séi), it is not possible to rigorously show that
these functions do not affect the fundamental assumptions about time-scale
properties. We assume that the functions do not affect the time-scale prop-
erty so that the stator plus line algebraic equations for this single-machine

model become

= Ruely+ tge + Visin(d — Oyy) (5.188)
= Rgely — Yge + Vscos(6 — Oys) (5.189)
0 = Rl (5.190)
X// _ X ) (X/ _ X//)
- _X"7] ( d s £ d d
~5P (1) (5.191)
(X// _ XZS) (X/ _ X//)
. = —XII, — =1 B+ 1 1
¢f1 qe™q (X(/Z — st) d + (X¢/1 — ng)wml
~SP(Ya) (5.192)
Vi = Rely— Xeply+ Visin(s — 0,,) (5.193)
Vo = Rely+ Xeplg+ Vscos(d — Oys). (5.194)

These equations can be written in circuit form as shown in Figure 5.6.
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Xq =X

(Id"’jlq) e/(8-1/2) JXd Ry R, T2ep

Xg-X1)
; Eg -
[[ (Xfifxls) d

. 2
+(Xg-X 1+ s (1]

[(Xd Xls)

7 ¥
Xg-Xy)

X, _X/» - 2 )
L Ka=4a) v, —Sé)(Yz)]] &/(8-/2)

+] Xa-Xy) Eq

Xa-Xyy)

111

Figure 5.6: Synchronous machine subtransient dynamic circuit including

saturation

With this assumption, the dynamic model with saturation included but
stator /network transients eliminated is

dE, !
Tdo dt

dip1q
T//
do™ 17 dt
dE"
T —d
9 dt

dips
T// q
° dt
do

dt
2H dw
wg dt

dE fd
dt

/ / Xq— Xq
—E, — (Xa — Xg)[la - m(%d + (Xg — Xes) 1
[+ S (V)] - Sﬁz)(yz) + Efa (5.195)
—ra+ E, — (X — Xes)[a — S5 (V) (5.196)
X/ _ X//
By + (X — XUy — m(¢2q (Xg — Xes)Iy

+E) + S5 (Ya))] + 52 (Ya)
—tag — By — (X! — Xos)I, — S5 (Va)

w— Wy
(X4 = Xey) 0, (G = X)
(X)—Xes) 77 (X)) — Xis)
(Xy — Xus) (Xy — X7)
(X5 — Xus) (X — Xs)
—(X] = X1aly + 55 (V)
~SP(Ya)Iy — Trw

Th — Y1aly

Byl + hogly

—(KE + SE(Efd))Efd + Vg

(5.197)

(5.198)

(5.199)

(5.200)

(5.201)
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de KF
T = “Ry+ B 5.202
Pt ;i (5.202)
dV; KiK
TAd—tR = Vit KaR;— A B+ Ka(Viep — Vi) (5.203)
dT
Ten=g- = —Tu+Psy (5.204)
g = “hwvAle-pol oot 2
SV sv + Po 7o \ o (5.205)
with the limit constraints
VR < Ve o< V™ (5.206)
0 < Psv < Piy” (5.207)

and the required algebraic equations for Vi, I, and I, which come from the
circuit of Figure 5.6:

"
0 = (Ry+ R)la— (X[ + Xep), — %Ed
+%¢2q — S (Y2) + Vi sin(d — 0,5) (5.208)
0 = (Rs+ R+ (X + Xep) Ly — ((%:7;(3%
_%%d + 8P (Va) + Vicos(6 — 6,s)  (5.209)
the following equations for Vy, Vg, V;:
Vi = Relg— Xeply + Vssin(6 — 0ys) (5.210)
Vo = Relg+ Xepla+ Vscos(0 — Ous) (5.211)

Vi = JVi+V? (5.212)

and finally the saturation function relations, which must be specified.

The saturation functions, in general, may be functions of I4, I,, and I,.
From (5.190), these functions would be evaluated at I, = 0. If the saturation
functions include I; and I, the nonlinear algebraic equations (5.208) and
(5.209) must be solved for I and I, as functions of Ej, E}, 114, 12, and
d, and then substituted into (5.210)-5.212) to obtain Vg, V;, and V;. If the
saturation functions do not include /4, I, then the currents 14, I, can easily
be solved from (5.208) and (5.209).
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To obtain a two-axis model with saturation included as above, we again
assume that Ty, and T, are sufficiently small so that an integral manifold
exists for 114 and 19,. A first approximation of this integral manifold is
found by setting Ty, and Ty, equal to zero in (5.196) and (5.198) to obtain

0 = gt El— (X5 — Xes) g — S (Ya) (5.213)
0 = —thoy — Ej— (X} — Xp)I, — S5 (Ya) (5.214)

We now assume that S gl) (Y2) and Séz) (Y3) are such that these two equations
can be solved for 114 and 19, to obtain

g = By — (X} — Xes)la— S5 (v3) (5.215)
Yoy = —Ej— (X} — Xe)Ig — S5 (V3) (5.216)

where
Y; & [, E, 1, Ej'. (5.217)

When used to eliminate 114 and v, in (5.195)-(5.212), the equations for I,
and I, become

0 = (Rs+R)ly— (X, + Xep)ly— Elj — sg3>(y3)

+Vssin(0 — Oys) (5.218)
0 = (Rs+ Ry + (Xs+ Xep) Ly — Eb + 5 (v3)
Vs cos(d — Oys). (5.219)

The saturation functions 553) (Y3) and 553) (Y3) are a combination of Sc(f),
532) and Sﬁ), Séz) as found by substituting (5.215) and (5.216) into (5.208)
and (5.209). These two equations can be represented by the circuit shown
in Figure 5.7.

The two-axis dynamic model with synchronous machine saturation is

dE!
Too gy = ~Ey— (Xa=Xg)la~ S (¥3) + Eya (5.220)

dE!
g = ~Bat (Ko =X)L+ S (vs) (5.221)
G = e (5.222)

dt
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’ ’ ’ 3
[0+ (Xg - X)) I+

j (Ec;_ S(?l) (y3))]ej(5—n/2)

(I, +il,) 0 J6-T2) Xy

YY)+ A

Re  jXep

(Vy+ jVy) e /62

Vs ejevs

Figure 5.7: Synchronous machine two-axis dynamic circuit with saturation

2H dw
wg dt

dEfd

E= a0t
dRy
r
dVgr
T __
ATt
dT v
T "
CH dt
dPsy

dt

Tsv

= Tu —Egly— EJI,

— (X, — X)) Ial,

+S,(13) (Y3)I, — S (Y3) Iy — Trw

= —(Kg+Se(Etq)Efa+ VR

K
= —R;+ —FEfd
F

T

= —Vgr -l-KARf —
= —Tu+ Psy

= _PSV+PC—R—

with the limit constraints

Vv Ifznin

<
0 <

KaKrp

E¢g+ Ka(V,

T
i_l)
Ws

Vi < Vénax
Psy < Pgy™

(5.223)

(5.224)

(5.225)

of — V2) (5.226)

(5.227)

(5.228)

(5.229)
(5.230)

and the required algebraic equations for I, I,, which come from the circuit
of Figure 5.7, or the solution of the following for 14, I,:

0 =

(Rs + Re)Id - (thz + XEP)Iq - Eél - Stgg)(Y?’)
+Vssin(0 — Oy5)
(Rs + Re)ly + (X + Xep) Ly — EL + S (v3)
+Vs cos(d — Oys)

(5.231)

(5.232)
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then substitution into the following for Vy, V,, Vi:

Vi = Rely— Xepl, + Visin(d — 0,5) (5.233)
Vi = Rely+ Xeplg+ Vicos(d — Oys) (5.234)

Vi = JVi+V? (5.235)

If the saturation functions include a dependence on I; and I, the non-
linear algebraic equations (5.231) and (5.232) must be solved for I; and I, as
functions of Ej, E}, and ¢ and then substituted into (5.233)-(5.235) to ob-
tain Vg, V4, and V;. If the saturation functions do not include a dependence
on Iy and Iy, then I; and I, can easily be found from (5.231) and (5.232).

To obtain a flux—decay model with saturation included, we again assume
T, is sufficiently small so that an integral manifold exists for Ej;. A first
approximation of this integral manifold is found by setting Téo equal to zero
in (5.221) to obtain

0 = —E)+ (X, — XD, + S (v3). (5.236)

We now assume that SS) (Y3) is such that this equation can be solved for E/,
to obtain

Ey = (Xg— XDI,+ 5% (Va) (5.237)

where

1>

Yy [Ia E, 1,)! (5.238)

when used to eliminate E/, in (5.220)—(5.235), the equations for I; and I,
become

0 = (Rs+ Re)ly— (Xg+ Xep)ly — SS9 (Y1)

Vs sin(d — 0y5) (5.239)
0 = (Rs+ Ry + (Xi+ Xep)la — L+ S5 (va)
Vs cos(0 — Oys). (5.240)

The saturation functions S c(l4) (Yy) and Sé4) (Y4) are a combination of Sc(lg),

Ség), and Sié) as found by substituting (5.237) into (5.218) and (5.219).

These two equations can be represented by the circuit shown in Figure 5.8.
The one-axis (flux-decay) dynamic model with saturation is
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(Ig +jl,) eI&T2) X R R

[Xq-x0)1g+ sP(ry)

4 (Eq-5 (7)) ]
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Figure 5.8: Synchronous machine one-axis (flux-decay) dynamic circuit with
saturation

dE'
Téod—tq = —E,— (Xq— X))~ S5 (Y2) + Eyq (5.241)
do
o Y Tws (5.242)
2H dw
o = T = Byl — (X = X)) Ialy + sWyy,
_5(34) (Y)I;— Trw — Tp (5.243)
dE
ETN = —(Kp+ Se(Epq))Erq + Ve (5.244)
dR; Kp
@iy OF g )
Ja 7 Rf + Tr fd (5 245)
dV, KaK
TAd—tR — Vet KaR;— 2L B4 Ka(Voes — Vi) (5.246)
dT’
TCHd—éM = —Ty+ Psy (5.247)
dPSV 1 w
T = —-P Pr——(— -1 .24
S sv + Pc o <ws ) (5.248)
with the limit constraints
Vi < Y < Vex (5.249)
0 < Pgy < Pmax (5.250)

and the required algebraic equations, which come from the circuit of Fig-
ure 5.8:

0 = (Rs+ Re)ly— (Xg+ Xep)Iy — SS9 (Y1)
+Vssin(0 — Oy5) (5.251)
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0 = (Rs+ Ry + (X4+ Xep)la — L+ S5 (Ya)
+Vs cos(0 — Oys) (5.252)

then substitution into the following for Vy, V,, Vi:

Vi = Rely— Xepl, + Visin(s — ) (5.253)
Vi = Rely+ Xeplg+ Vicos(d — Oys) (5.254)

Vi = JVi+ V2 (5.255)

If the saturation functions include a dependence on I4 and I,, the non-
linear algebraic equations (5.251) and (5.252) must be solved for I and I,
as functions of Ey, ¢ and then substituted into (5.253)-(5.255) to obtain Vg,
Vg, and V;. If the saturation functions do not include a dependence on I,
and I, then I; and I, can easily be found from (5.251) and (5.252).

There is really no point in trying to incorporate saturation into the clas-
sical model, since it essentially assumes constant flux linkage.

5.9 Problems

5.1 Given the two-axis dynamic circuit of Figure 5.2, solve for I; and I, in
terms of the circuit parameters plus 4, E;, E!, and the source Vg, 0.

5.2 Given the one-axis dynamic circuit of Figure 5.3, solve for I; and I, in
terms of the circuit parameters plus 4, E; and the source Vj, 0,s.

5.3 Using the two-axis dynamic model of Section 5.4, derive an expression
for the voltage behind X, that gives a circuit that is equally as valid
as that of Figure 5.2.

5.4 Using the one-axis dynamic model of Section 5.5, derive an expression
for the voltage behind X, that gives a circuit that is equally as valid
as that of Figure 5.3.

5.5 Given a synchronous generator with a two-axis model:

(Va4 V)l = 1/0 pu
(Ig+ jI,)e’®=™2 = 0.5/30° pu

Ry =0pu, Xq=12pu, X;=1.0pu, X!, = 0.2 pu, X{I = 0.2 pu
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(a) Find the steady-state values of d, E, E.
(b) Find the inputs Eyq and T,.
(¢) Find E’ and ¢ for the classical model.

5.6 Given the following two-axis dynamic model of a synchronous machine
connected to an infinite bus, with the parameters shown (and Rs = 0):

(a) If the machine is in a stable steady-state condition supplying zero
real power and some reactive power (), what can you say about
the values of Iy and 1,7

(b) Find the values of Ty and E¢4 in part (a) if Q =1 pu.

(c) Describe, in as much detail as possible, the system response if E ¢q
is suddenly changed to be 2.0 pu.

! dE(/l / !
TdoW = —E,— (Xg—Xg)la+ Epa
dE!
7, (X, - X,
@
dt
2H dw
wg dt

= w— ws

= Tw — Ejly— B\, — (X, — X)),

B+ (X = X0) Iy + 5 Ey| 07D = X} Iy + jI,) /0 4 Vel

T), =50sec, Xq=12pu, X, =03pu
Ty, =0.6sec, X,=1.1pu, X;=0.7pu

ws = 2760 rad/sec, H =6.0sec, V =1.0 pu, 6 =0rad.



Chapter 6

MULTIMACHINE
DYNAMIC MODELS

This chapter considers the dynamic model of many synchronous machines in-
terconnected by transformers and transmission lines. For the initial analysis,
loads will be considered balanced symmetrical R-L elements. For notation,
we adopt the following “number” symbols:

m = number of synchronous machines (if there is an infinite bus, it
is machine number 1)
n = number of system three-phase buses (excluding the datum or
reference bus)
b = total number of machines plus transformers plus lines plus loads
(total branches).

6.1 The Synchronously Rotating Reference Frame

It is convenient to transform all synchronous machine stator and network
variables into a reference frame that converts balanced three-phase sinusoidal
variations into constants. Such a transformation is

coswgt  cos(wgt — Z)  cos(wst + )

2
Tiigos 2 3| - sinwst  — sin(wst — %ﬂ) — sin(wst + 2%) (6.1)
1 1 1
2 2 2

119
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with
cos wgt — sin wgt 1
Td_qcl)s = cos(wst — 2)  —sin(wst — ZF 1 (6.2)
cos(wst + 2)  —sin(wst + ZF) 1

Recalling the transformation and scaling of Section 3.3, we use the subscript
1 for all variables and parameters to denote machine . We now define the
scaled machine stator voltages, currents, and flux linkages in the synchro-
nously rotating reference frame as

ai

Vi Vi

A _ VBaABCi
VQi = quosqu(ln' V;]z = quos v, 'Z Vii
Voi Voi BbQi 1y,
1 Vai
= ﬁquos “ﬁn Z = 1, s, (63)
ci
IDi Idz Iai
A _ Ipapci
IQi = quosqu(ln‘ Iqi = quos [72 Ibi
IOi 01 BbQi I
1 Iai
= ﬁquos ;bl Z = 1, B (64)
ci
Ypi Yai Yai
A - ABABC
ZZ)QZ' = quosqu(ln‘ T;Z)qi = quos A - T;Z)bi
Yoi Yo BDQE 4
1 wai
= ﬁquos 'l)Z)bZ Z = 1, s, (65)
1/1(;1

where Ty40 is the machine ¢ transformation of Section 3.3, and all base
scaling quantities are also as previously defined. For §; = geshaf‘ci — wgt, it
is easy to show that

sind; cosd; O
quOSTd_in- = —cosd; sind; 0 i=1,...,m (6.6)
0 0 1
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and
sind; —cosd; O
TigoiTyges = | cosd; sind; 0 i=1,...,m. (6.7)
0 0 1

This transformation gives

(Vpi + Vi) = (Vai+iVa)ed®=32)  i=1,....m (6.8)
and

(Ipi +jlgi)) = (Igi+il0)e?% 2  i=1,....m. (6.9)

We now assume that all of the m machine data sets and variables have been
scaled by selecting a common system-wide power base and voltage bases that
are related in accordance with the interconnecting nominal transformer rat-
ings. Applying this transformation to the general model of (3.148)—(3.159)
with the same scaling of (5.37)—(5.40) with € = 1/wg, the multimachine
model (without controls) in the synchronously rotating reference frame is

dyp;

e~ = Ralpi+vqi+tVpi  i=1...m (6.10)
edﬁf" = Rulgi—vpi+Voi i=1,...,m (6.11)
edﬁf" = Ryloi+Vo; i=1,....m (6.12)
)
Téoi% = —E[/;i - (Xdi - leii) lfdi - %Wldi
+ (Xp = Xesi)lai = Byy)| + Bgag i =1,...,m (6.13)
Té’oi% = i+ Bl — (X - Xe) D i=1,...m (6.14)
) —
l;oi dzdi = _Eéli + (Xqi - X;i) [Iqi - (%ji_ ;Z:))z (1/12«12
+ (Xp = Xl + Eyp)] i=1,...m  (6.15)
T, d‘fliqi = g — Bl — (Xl — Xesi)lyi  i=1,...,m (6.16)
Tsi@ = wy t=1,....m (6.17)

dt
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dwy; ‘
Tsiﬁtl = Ty — (wdi[qi - wqi[di) — Trw; 1= 17 ce,m (618)
X" — Xg ) (X/- _ X”-)
= —Xgl -+( dé i) gl 4 \di T di ,
Y ditdi (X&Z — Xﬁsi) qi (X&Z — X, V14
X" — X, X! X"
b = Xl S B S
(Xqi - sti) (qu — Xﬂsi
¢0i = _XZSiIoi 1= 1, o, m (621)
where
(Voi +3Va:) = (Vai+iVe)d®™ D i=1...m  (622)
(Ipi+jlgi) = (Igi+ jlg)e?%2) i=1,....,m (6.23)

(Wpi + i) = (o +jea)e®2)  i=1,...m.  (6.24)

The terminal constraints for each machine are still unspecified. The next sec-
tion gives a multimachine set of terminal constraints, which can be analyzed
in a manner similar to the last chapter.

6.2 Network and R-L Load Constraints

Rather than introduce an infinite bus as a terminal constraint, we propose
that all m synchronous machine terminals be interconnected by balanced
symmetrical three-phase R-L elements. These R-L elements are either trans-
mission lines where capacitive effects have been neglected, or transformers.
For now, we assume that all loads are balanced symmetrical three-phase R-L
elements, so that the multimachine dynamic model can be written in a multi-
time-scale form, as in Chapter 5. We assume that all line, transformer, and
load variables have been scaled by selecting the same common power base
as the machines, and voltage buses that are related in accordance with the
interconnecting nominal transformer ratings. The scaled voltage across the
line, transformers, and loads is assumed to be related to the scaled current
through them by
V = —Ril+
L diy

Viie = —R:[; _
bi zbz“‘ws dt

i=m+1,....b (6.25)

i=m+1,...,b (6.26)
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ch' = _Ri[ci + wisd:ftm =m+ 1, e ,b (627)
with
wai Xesi Xemi Xemi _Iai
T;Z)bi = Xemz' Xesi Xemz' _Ibi
wci Xemi Xemi Xesi _Ici

i=m+1,...,b. (6.28)

To connect the machines, these constraints must also be transformed. The
scaled line, transformer, and load variables in the synchronously rotating
reference frame are defined as

Vi A1 Vai
VQZ = ﬁquos VE)Z ’L =m + 1, e ,b (629)
Voi | | Ve
Ip; | A1 [ I
loi | 2 —STugs | I i=1+m,...,b (6.30)
Ioi | | Lo
T [ tas
TZJOi ] L wci

The /2 is needed because of (6.3)-(6.5). Applying this transformation to
(6.25)—(6.28) gives the network and load constraints suitable for connecting
the m machines:

dYp; .
e% = Rilpi+qi+ Vpi i=m+1,...,b (6.32)
dyo; .
dyo; .
€ Qéf = RZIOZ+VOZ z:m—I—l,...,b (634)
Yoi = —Xewiloi it=m+1,...,0. (6.37)

with Xep = Xegi — Xemi and Xeo; = Xegi + 2X i The stator and network
plus loads all have exactly the same form when expressed in this reference
frame. The b sets of flux linkages and currents are not all independent.
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6.3 Elimination of Stator/Network Transients

With this synchronous machine plus the R-L element model, it is possible to
formally extend the elimination of stator/network transients of Section 5.3
to the multimachine case. To be proper, we should reduce our dynamic
states to an independent set. For inductive elements, this is normally done
by writing the dynamics in terms of an independent set of loop currents.
To do this, we use several concepts from basic graph theory. Consider the
three-node, four-branch directed graph of Figure 6.1. It is a directed graph

d
2N,
a b
0

Figure 6.1: Directed graph

because each branch (labeled a, b, ¢, d) has an arrow associated with it. This
arrow is the assumed direction of the branch current, as well as the assumed
polarity of the voltage. For example, the four branch voltages (all written
with the same rise/drop convention) must satisfy Kirchhoff’s laws (the three
loops shown in Figure 6.1):

Vg —Up—Ve = 0 (6.38)
Ve — Vg = (6.39)
Vg—Vp—0g = 0 (6.40)
or
Clvpranch = O (6.41)

where C, is the augmented branch-loop incidence matrix

1 2 3

1 0 1

Lo (6.42)
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In general, the branch-loop incidence matrix is b x ¢, where /£ is the total
number of loops in the graph (or circuit). Clearly, C, is not unique, since
we can define loops in any direction we choose. Furthermore, electrical en-
gineers should recall that, for a given circuit (graph), there are at most b—n
independent loop currents. For planar circuits, these are the mesh currents.
In the graph shown, n = 2, since n was defined previously as the number
of nodes excluding the reference node. Thus, since one of the nodes in Fig-
ure 6.1 must be the reference node, there are only two independent columns
in C, (two independent rows of C%). For assumed arrows of the b branches
and assumed directions of the ¢ loops, the C;, matrix can be written by
inspection using the following algorithm:

Cy(i,j)= 1 if branch 7 is in the same direction as loop j, and
branch ¢ is in loop j

Cy(i,j)=-1 if branch i is in the opposite direction of loop j, and
branch ¢ is in loop j

Cy(i,j)= 0 if branch 7 is not in loop j

Since the branch directions are the assumed branch current directions as
well,

"hranch = Cailoop (6.43)

which, for our example, gives

la = foop1 T loop3 (6.44)
Wb = _iloopl - Z'loop3 (6.45)
le = ~loop1 T Uoop2 (6.46)
o = _i100p2 - Z.100p3 (6.47)

which can be easily verified by inspection.

The b—n independent loops can be determined by partitioning C, in a
special way. Begin with b branches all disconnected (as our multimachine
model currently is). Connect n branches such that every node is connected,
but no loops are formed. The resulting graph is called a tree. The remaining
b—n branches are called tree links, and are now added one at a time. Adding
one tree link will create a loop. This loop should be oriented in the same
direction as the tree link. Adding a second tree link will create a second
loop. This loop should also be oriented in the same direction as the second
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tree link, and must not include the previously added tree link. When this
process is completed, there will be b—n loops, which correspond to the b—n
tree links. Thus, the incidence matrix created in this manner will have only
b—n columns and will be structured as

1
1ont!
n Cr
Co=, " (6.48)
. I
b

This b x ¢/(¢ = b — n) branch loop incidence matrix is called a basic loop
matrix, and does not have the subscript a. The columns of C, that do not
appear in Cy, are dependent. It should be clear that we still have the relations
for Kirchhoff’s laws:

hranch = Cbiindep. loop (6.49)
Civpranch = O (6.50)

This matrix will now be used with our b sets of stator/network/load equa-
tions. We define

A
Upbranch = [¥p1--¥ps]' (6.51)
Ipbpanch = [Ip1-Ips]! (6.52)
A
Vpbranch = [Vpi- - Vpyl' (6.53)

and similarily for () and O. For a system with a basic branch loop incidence
matrix describing the interconnection of these b branches as Cp, we define
loop flux linkages as

A

leoop = ngDbranch (6.54)
A t

¢Qloop = Cb¢Qbranch (6.55)
A

¢Oloop = C£¢Obranch (6.56)

and write the corresponding branch currents in terms of independent loop
currents as

Cyl

ploop (6.57)

I Dbranch
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IQbranch CbIQloop (6.58)
Iobranch = Cb[oloop (6.59)

By our choice of numbering, the first m branches are synchronous machines,
and the last b—m branches are transformers, lines, and loads. It might appear
that this numbering scheme would not allow us to have two synchronous
machines connected to the same bus, since the first n branches must form
a tree. This clearly is not a real limitation, since the ordering of C, can be
changed arbitrarily after it is formed to suit a particular preference.

We have not shown it formally, but the topology relationships between
the abc branch voltages and branch currents are the same as for the dgo
branch voltages and currents. We now write the stator/network/load tran-
sients of (6.10)—(6.24) and (6.32)—(6.37) in vector/matrix form:

4% pbranch
e—2L dl;anc = RbranchIDbranch + waranch + VDbranch (6.60)
dy
Qbranch
€ dt = RbranChIQbranch - ¢Dbranch + VQbranch (6.61)
d¥obranch
€ dl;anc = Rbranchlobranch + Vobranch (6.62)

where additional algebraic equations relating the flux linkages and currents
could be written using (6.19)—(6.24) and (6.35)—(6.37).

Multiplying these equations by C} and using the properties of Cj, from
(6.50) and (6.57)—(6.59) gives the b-n independent sets of stator /network /load
transients

Y ploo
P _
“a CéRbrancthIDloop‘i’@Z)Qloop (6.63)
dip
Qloop
T Cy Ryranch Cvloloop — ¥ ploop (6.64)
do)
6% - CgRbrancth[oloop- (6.65)

As in the single machine/infinite bus case of Chapter 5, the Ry ..., = 0
case has a very interesting result. When resistance is zero, (6.63)—(6.65)
h;we an exact integral manifold for v ploop’ ¢Q100p’ and woloop7 regardless
of e

| _ | _ | _
leoop Rpranch =0 leoop Rpranch =0 woloop Rpranch =0 .

(6.66)
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This means that if v ploops ¢Qloop7 and woloop are initially zero and Ry, ., ch
= 0, then leoopv ¢Qloop7 and woloop remain at zero for all time ¢ re-
gardless of the size of e. If ploop ¢Qloop7 and d’oloop are not initially
zero and Ry, = 0, then leoopv leoop oscillate forever and woloop
remains at its initial value, according to (6.63)—(6.65). Unlike the single
machine/infinite bus case, the R} .., = 0 condition is not practical, since
this means that the only possible load could be one or more synchronous
machines acting as motors.

For Ry, nch 1ot equal to zero but e sufficiently small, an integral man-
ifold for leoopv w_QlOOp’ and #Oloop still ex1§ts, but has not been fognd
exactly. An approximation of this integral manifold can be found by setting
e to zero and solving all the algebraic equations for the stator /network/load
flux linkages and currents. This requires the solution of the following equa-
tions:

0 = CgRbrancthIDloop+¢Qloop (6.67)
0 = CgRbrancthIQloop_leoop (6.68)
0 = CgRbrancthIOloop (6.69)
with
leoop = ngDbranch (6.70)
Yoloop = Ci¥gbranch (6.71)
woloop - ngobranch (6.72)
Ipbranch = Cprloop (6.73)
IQbranch = CbIQloop (6.74)
Iobranch = Cb[oloop (6.75)

and (6.19)—(6.24) plus (6.35)—(6.37). Alternatively, we solve (6.10)—(6.12),
(6.19)—(6.24), and (6.32)—(6.37) evaluated at € = 0. The “zero” variables are
decoupled and will not be carried further. Adding (6.10) plus j times (6.11)
and using (6.22)—(6.24) gives

0 = Rs(lu +j[qi)ej(6i_%) — J(Yai +j1/1qi)ej(5_%)
+ (Vi —I—j‘/qi)ej(&'—%) i=1,...,m. (6.76)

Substituting (6.19) and (6.20) gives the following complex equation, which
can be written as the circuit of Figure 6.2.
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” b Xgi Ry (g +jlgi) A
” " (qu'—X tsi , (Xq,'—X qi
(X gi— X di)] gt 7 di= 77 2qi +
(Xqi X m‘) (Xqi_X tfsi) :
: Jj(®i -m/2)
(Vi +iVqi) e
Xai-X o) o (Xg- Xii .
+j ( d,l éw) Eqi +j ( d,l dt) \Vldl:| o8 = T2) 1 -
(XaiX ) (Xai-X ) -
Figure 6.2: Multimachine subtransient dynamic circuit (¢ = 1,...,m)
. . i(6;,— T . i(6,—T
0 = (Roi+jX5)Igi + jI)e%™3) 4 (Vg + jVy)e?=3)

(K= Xew) o, K= Xp)
(Xps — Xewt) * (Xpy — X)) "
(Xt/i/i — Xési) . (Xz/ii — Xc/l/i)
X, = X 5 X0, Xo)
di lsi di lsi
i=1,...,m. (6.77)

- [(X;; X+

+J Prai| €% 2)

Adding (6.32) plus j times (6.33) and eliminating ) p;, ¥¢g; using (6.35) and
(6.36) give the network/load equation, which can be written as the circuit
of Figure 6.3.

(ID,'+jIQl') R; lepi
oYY Yo
- (Vpi+jVoi) +

Figure 6.3: Network plus R-L load dynamic circuit (i =m +1,...,b)

0 = (R +lepi)(IDi -l-jIQi) + (Vpi +jVoi) i=m+1,...,0(6.78)

To convert from branch subscript notation to bus subscript notation, we
make the following notational numbering of branches. Assume that loads are
present at all n buses, and connected to the reference bus. These n branch
voltages are then bus voltages denoted as

Vel & (Vpi+iVo:) i=1,....n. (6.79)

All branches in excess of these n have branch voltages that are either equal
to bus voltages or equal to the difference between two bus voltages. With
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this bus notation, the multimachine dynamic model is any connection of the
circuits of Figures 6.2 and 6.3 into a network resulting in m machines, b
branches, and n buses.

Generalization of Network and Load Dynamic Models

Before stating the final model, we now make a major assumption about
the actual network and loads. We assume that an integral manifold also
exists for all dynamic states associated with networks and loads that are not
simple R-L elements. We assume that the integral manifold for the network
dynamic states can be approximated by the same representation as above
(Figure 6.3 allowing X, to be negative). We also assume that the integral
manifold for the load electrical dynamic states can be approximated by sets
of two algebraic equations that can be written as sets of complex equations
of the following general form, using the convention of Figure 6.4.

Bus i

|

+

Vi %= (Vp; + V)

Irpi+jlLgi = Reference

Figure 6.4: Generalized load electrical dynamic circuit

(Vpi + jVoi)ILpi — j1rgi) = Pri(Vi) + jQri(Vi) i=1,...,n (6.80)

where Pr;(V;) and Qr;(V;) may be nonlinear functions of the bus voltage
magnitude V;. Commonly used load models are

Pri(Vi) = Proi+kpuVi+kpuVi+... i=1,....,n  (6.81)
Qri(Vi) = Qroi +kouVi+koaVi+... i=1,...,n (6.82)

or any combination of terms involving any power of V;. The constants Pr,;
and Q. represent a “constant power” component, kp1; and kg1; represent
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a “constant current magnitude at constant power factor” component, and
kpo; and kgo; represent a “constant impedance” component. Note that Pr;
and (Qr; are given as “injected” powers, meaning that Pj; will normally be
negative for a passive load.

With this generalized model for the network and loads, we write the
algebraic equations for the interconnection of m machine circuits with all
transformers, lines, and loads using the standard network bus admittance
matrix defined through the bus voltages and net injected currents by

(Igs + 710)e?% %)+ (Ippi + j11gi)

n
= ) Ve Vel i=1,...,m (6.83)
k=1

n
(Ipi + jILg) = Y Y * Vel i=m+1,...,n (6.84)
=1

where all quantities are as previously defined, and Yj;e/%* is the ikth entry
of the network bus admittance matrix. This matrix is formed using all of
the branches of the form of Figure 6.3. It has the same formulation as the
admittance matrix used for load—flow analysis.

This representation gives the following dynamic model for the m machine,
n bus power system after stator/network and load electrical transients have
been eliminated, and using the load model of Figure 6.4 and (6.80):

dE". (X — X"
T 8 B (X — X — —di “hdi)
doi dt qi ( di dz)[ di (X[,h _ Xész’)2
(rai + (X — Xesi)lai — Ey)| + Eas
i=1,....m  (6.85)
di14; .
Téﬁn% = i+ By — (X — Xesi) s i=1,...,m (6.86)
dE); (X! — X"
/ di / / qr qr
- = B+ (X — X0) [Ty —
a0t g¢ di + ( q qz) l q (Xi/ﬂ — sti)2
(Waqi + (X3 = Xesi) s + Epp)| i=1,...,m (6.87)
dogi .
g0 iiq = g — Bl — (Xl — Xe) i i=1,...,m (6.88)
dd;

o T Wi ws i=1,...,m (6.89)
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QHZ' dwi (X// Xész) ! (Xd _X )
= T — o SR g, Sl T iy, T
ws di METX = X)) (X — X SZ)W e
(X/l XZSZ') , (X Xl/ )
715 y g U LAY
X Xzsz') aildi ¥ R Xy V2ol
(X” )Idilqi —Trwi; 1=1,....m (6.90)
dE g .
TEi d;d = (KEZ + SEZ(Ede))Ede + Vg t=1,....,m (6.91)
dRy¢; Kp; .
Tr dtf — —Rp+ TF i=1,...,m (6.92)
Fi
dVZ K ZK 7
Tx; df = —Vgi+ KaiRyp; — AP E tdi
Fi
+EKAi(Voof; — Vi) i=1,...,m (6.93)
dT v .
ToH: djtw = —Ty;+Psy; i1=1,...,m (6.94)
dPsy; 1 [w; .
Toy;i——"— = —Pgy; + Pci — — -1 =1,..., .
SViT svi+ Ic R (ws ) i m  (6.95)
with the limit constraints
me < Vp < V™ i=1,....m 6.96)
0 < Psy; <Pgei i=1,...,m 6.97)
and the algebraic constraints
0 = Viel + (Rys+ jX0) (Las + 1) i D
(Xl/ _ XZSZ') (X/ —X”-)
— (X0 = X i + o——— By — 71
( ) (X/ sti) d (X,/ﬂ — Xﬁsi)w2q
(Xgi — Xosi) (Xg — X) j(8:—%)
4 Cdi - s @ '+ i i ;| €03
X5, - Xesa T (X = Xawn)
=1,...,m (6.98)
Vie "'l — jlga)e %73 + Pra(Vi) + jQui(Vi)

Pri(Vi) +jQri(Vi) =

n
= Y ViViYiel Ol =1 m
k=1

Z Vivkyikej(@i—(?k—oqk)
k=1

(6.99)

i=m+1,...,n (6.100)
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The voltage regulator input voltage is V;, which is automatically defined
through the network algebraic constraints. Also, for given functions Pr;(V;)
and Qr;(V;), the n + m complex algebraic equations must be solved for V;,
0; i =1,...,n), Iy, Iy; (i =1,...,m) in terms of the states d;, E;, 1ag,
B, g (i = 1,...,m). The currents clearly can be explicitly eliminated
by solving either (6.98) or (6.99) and substituting into the differential equa-
tions and remaining algebraic equations. This would leave only n complex
algebraic equations to be solved for the n complex voltages V;el%.

The Special Case of “Impedance Loads”

In some cases, the above dynamic model can be put in explicit closed form
without algebraic equations. We make the special assumptions about the
load representations:

PLi(Vi) = kpauVP i=1,...,n (6.101)
QLi(Vi) = koaVi i=1,...,n. (6.102)

In this case, the loads and Rg; + ch/l/i can be added into the bus admittance
matrix diagonal entries to obtain the following algebraic equations:

. - 1 (X” Xési)
Iy +jIg)e?% %) = (XU — X)Ly 7E’Z-
( d Jiq )e (Rsi +=7Xz/i,i) ( ) (X/ Xési) d
. (X/ X//) ¢2 (X XZSZ)E/
(X, XZsz) qZ (Xcllz XZsz)
(X5 — XG) IORES 1 6
I X" T R )
i=1,...,m (6.103)
1 (X//' - sti)
0 — _ - X”' _ X”' I i (ﬂiEl
<Rsi + JX&,) l( 7 dl) ! (X:]z - sti) @
X/ X// X X si
- ( )¢2qz+ ]( . )E{]z
( XZSZ) (Xdi sti)

\_/\_/

Xész

(Xdz
(
Z IWViee% i=1,...,m (6.104)
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Z (G + jBIVe  i=m+1,...,n (6.105)

where G, + jB’k is the ikth entry of the bus admittance matrix, including

all “constant impedance” loads and 1/(Rs; + jXJ;) on the ith diagonal.

Clearly, all of the Vje/%(k = 1,...,n) can be eliminated by solving
(6.104) and (6.105) and substituting into (6.103) to obtain m complex equa-
tions that are linear in Ig4;, I4i(i = 1,...,m). These can, in principle, be
solved through the inverse of a matrix that would be a function of ¢;, E/,,
V2gis E;Z-, Y1g; (1 = 1,...,m). This inverse can be avoided if the following
simplification is made:

Xho= XlUoi=1,...,m. (6.106)

With this assumption, (6.104) and (6.105) can be solved for Vje/% and
substituted into (6.103) to obtain

i (Xox — Xesk)
L+ il; — G B |tk k)
atili = 2(Gloq+ iBreq) l( o X)L
(Xox — //)% (Xdk Xosk)
(X{]k X sk) a* (Xdk Xﬁsk)

- (Xdk ‘;idk) j (05 —34) ) —
4j—ak " ak/ eIk T%) g =1,...,m (6.107

where G;’e a7t jB” is the ikth entry of an m x m admittance matrix (often

red
called thelkmatrix ;lz;duced to “internal nodes”). This can easily be solved for
Igi, 1y (1 =1,...,m) and substituted into the differential equations (6.85)—
(6.95). Substitution of Iy I,; into (6.98) also gives V; as a function of the
states (needed for (6.93)), so the resulting dynamic model is in explicit form

without algebraic equations.

6.4 Multimachine Two-Axis Model

The reduced-order model of the last section still contains the damper-winding
dynamics ¢14; and tgq;. If Ty, and Ty, are sufficiently small, there is an

integral manifold for these dynamic states. A first approximation of the fast
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damper-winding integral manifold is found by setting Ty, and T}, equal to
zero in (6.86)—(6.88) to obtain

0 = Y+ Ey— (X — Xesi)lag i=1,...,m (6.108)
0 = —thogi— Bl — (X, — Xea)lgi i=1,...,m.  (6.109)

When used to eliminate 114; and 124, the synchronous machine dynamic
circuit is changed from Figure 6.2 to Figure 6.5, giving the following multi-

JXgi Ry Ugi+jly) e (8i-m/2)

[Egi + (Xyi = X) Li +JE] o/ ®i/2)
(Vgi + Vi) 0D =V el

Figure 6.5: Synchronous machine two-axis model dynamic circuit (i =
1,...,m)

machine two-axis model:

, dE); ) , o
Tioi—g = By — (Xai— Xg)lai + Brai i=1,...,m (6.110)
dE), ‘
(;oi dtdl = _Eélz —+ (qu — X(,]z)‘[ql 1 = 1, c,m (6111)
dé;
o= wimws i=1om (6.112)
2H; dw;
wsl dtl = Tui = Egila — Eylyi
_(thzi - Xc/li)Idini —Trw; 1=1,...,m (6.113)
dEs -
Te; 7l —(Kgi + Sei(Efai)Erai + Ve i=1,...,m(6.114)
dRy; K :
TFz' dtfl — _Rfi+ TFZEde- 1= 1,...,77’L (6115)
dVg; K ai K s
Taq dRZ = —Vgi+ KaiRy; — Al FZEde-
t Tri
+KAi(Vier; = Vi) i=1,....m (6.116)
dTv;
Tomi—2 = _Tyy+Psyi i=1,...,m (6.117)

dt
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dPsy; 1 ;
Toyi—Yt = —Psyy+ Poi — —— (ﬂ - 1) i=1,...,m6.118)
dt Rpi
with the limit constraints
VRN < Vi S VB j=1,...,m (6.119)
0< Poy; < PR i=1,...,m (6.120)
and the algebraic constraints
0 = Viel" + (Ryi + X)) (Ta + jI5:)e? %~ 2)
— Bl + (Xg; = Xi) Lgi + GEy)e? 0 3)
i=1,...,m (6.121)
Ve (Igs — jI3)e 7072 + Pri(V;) + jQri(Vi)

n
=Y ViViYied Ol =1 om (6.122)

k=1
n
Pui(Vi) + jQrui(Vi) =Y ViV Ve O 0kmoxin)

k=1
i=m+1,....n (6.123)
As before, for given functions Pr;(V;) and Qr;(V;), the n +m complex alge-
braic equations must be solved for V;, 0; (¢ = 1,...,m) and Iy, I (i =1,
.., m) in terms of the states d;, E;, E; (i = 1,...,m). The currents can

clearly be explicitly eliminated by solving either (6.121) or (6.122 ) and sub-
stituting into the differential equations and remaining algebraic equations.
This would leave only n complex algebraic equations to be solved for the n
complex voltages Vjel% .

The Special Case of “Impedance Loads”

In some cases, this two-axis dynamic model can be put in explicit closed
form without algebraic equations. We make the special assumptions about
the load representations

Pri(Vi) = kpauVi?  i=1,....n (6.124)
Qui(V;) = kguV? i=1,...,n (6.125)

In this case, the loads and Rg; + j X, can be added into the bus admittance
matrix diagonal entries to obtain the following simplified algebraic equations



6.4. MULTIMACHINE TWO-AXIS MODEL 137

for the two-axis model with “constant impedance” loads

1

Iy il,)el0i—3) = [ ——
(d + j Q)e 2 Rsz‘i']Xéh

) [Eg; + (X;i — X}l

e 1 .
+ jE]eM%i73) — <7> Viel% i=1,...,m(6.126)

1 / / / st 1,56, —%)
0 = - Rt X, (B + (Xgi — Xai)lgi + 5 Eg;]e? 2
St di
n .
Z (Gl + jBL)Vied  i=1,....m (6.127)

n

Z L+ B Ve i=m4+1,....n (6.128)

where G}, + jB}, is the ikth entry of the admittance matrix, including all

“constant impedance” loads and 1/(Rs; + jX;) on the ith diagonal.
Clearly, all of the Vje/%(k = 1,...,n) can be eliminated by solving
(6.127) and (6.128) and substituting into (6.126) to obtain m complex equa-
tions that are linear in Ig4;, I4i(i = 1,...,m). These can, in principle, be
solved through the inverse of a matrix that would be a function of the states
8, El;, El(i = 1,...,m). This inverse can be avoided if the following

qi>
s1mphﬁcation is made:

Xl = Xj i=1,...m. (6.129)

With this assumption, (6.127) and (6.128) can be solved for V;e/% and
substituted into (6.126) to obtain

k=1 zk
i=1,....m (6.130)

where G; od T jB{r od is the ikth entry of an m x m admittance matrix (often

called thelkmatrix ;lz;duced to “internal nodes”). This can easily be solved for
Igi, Ii(i =1,...,m) and substituted into the differential equations (6.110)-
(6.18). Substitution of Iy, I4 into (6.121) also gives V; as a function of
the states (needed for (6.116)), so the resulting dynamic model is in explicit
form without algebraic equations.
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6.5 Multimachine Flux—Decay Model

The reduced-order model of the last section still contains the damper-winding
dynamics Ej,. If T, for all i = 1,...,m are sufficiently small, there is an
integral manifold for these dynamic states. A first approximation of the re-

maining fast damper-winding integral manifold is found by setting T(;m- equal
to zero in (6.111) to obtain
0 = Byt (Xg—Xi)y i=1,...,m (6.131)

When used to eliminate E’,, the synchronous machine dynamic circuit is
changed from Figure 6.5 to Figure 6.6, giving the following multimachine

PXai R g+ jlyy) 6O
+

’ 1 i (8-T/2)
[(Xgi = Xg) Ii +JES1 €/ N ,
(le' +qul~) E/(BrTE/Z) = Vl' e’ei

Figure 6.6: Synchronous machine flux-decay model dynamic circuit (i =
1,...,m)

one-axis or flux-decay model:

/ dEllli _ / / .
TdOiW = —qu- — (Xai — X)) 1 + Efgi i=1,....,m (6.132)
do;
d_tl = wi—ws t=1,...,m (6.133)
2H,; dw;
f— = T — Eylyi — (Xgi — Xg) Lailgi — Trw
ws dt
i=1,...,m (6.134)
dEfdi . .
Tgi dt = —(KEi—i-SEi(Efdi))Efdi +Vsii=1,...,m (6.135)
dRy; Kp; .
Tr; = —Ryg Ery =1,... 6.136
Fi dt fz+ TFZ fdi ) , ( )
dVp; KKy
Tai dfl = —Vri+ KaiRp — 7sz L Bra
+Kai(Vier, = Vi) i=1,....m (6.137)
dT v
Tomi—2t = ~Ta+Psy; i=1,...,m (6.138)

dt
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dP. 7 1 % .
Tsvi—Yt = —Pgy;+ Poj — — (i - 1) i=1,...,m(6.139)
dt Rp;

with the limit constraints

V}%I'lin leq Vi < Vlg,lax i=1,...,m (6.140)

1

0 < Py <PE* i=1,....m (6.141)
and the algebraic constraints

0 = Vil + (Rai + jXip) (Lai + )/ %)
_[(Xqi - Xc/li)Iqi + jE;i]ej(éi_%)
i=1,...,m (6.142)
Vie!" (L = jlgi)e ™% + Pra(Vi) + jQui(Vi)

n
= ViViYied O lmen) =1 m (6.143)

k=1
n
PLi(Vi) +3Qui(Vi) = Y, ViV Yie GOm0
k=1

i=m+1,...,n (6.144)
As before, for given functions Pr;(V;) and Qr;(V;), the n +m complex alge-
braic equations must be solved for V;, 0;(i = 1,...,n), Ig,Is(i =1,...,m)
in terms of the states d;, Et/]i (¢ =1,...,m). The currents can clearly be ex-

plicitly eliminated by solving either (6.142) or (6.143) and substituting into
the differential equations and remaining algebraic equations. This would
leave only n complex algebraic equations to be solved for the n complex
voltages V;el%.

The Special Case of “Impedance Loads”

In some cases, this flux-decay dynamic model can be put in explicit closed
form without algebraic equations. We make the special assumptions about
the load representations

Pri(Vi) = kpauVP? i=1,...,n (6.145)
Qui(Vi) = kqouVi? i=1,...,n. (6.146)

In this case, the loads and Rg; + j X/, can be added into the bus admittance
matrix diagonal entries to obtain the following simplified algebraic equations
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for the flux-decay model with “constant impedance” loads

1

(Idi +j]qi)ej(6i_%) = (R . +»7Xc/l) [(qu - Xc,li)Iqi +jE;i]€j(5i_%)
1 ,
Ty s eem 6147
1 (5T
0 = — Xy — Xéli)lqi +jE;i]€](6i_5)

(Rsz+jXC,lz)
ZG,k"‘]B Weel® i=1,...,m (6.148)

n

0 = Z G+ iBL)Vie!®  i=m+1,... n(6.149)

where G, + jB}, is the ikth entry of the admittance matrix, including all

“constant impedance” loads and 1/(Rs; + jX;) on the ith diagonal.
Clearly, all of the Vze/® (k = 1,...,n) can be eliminated by solving
(6.148) and (6.149) and substituting into (6.147) to obtain m complex equa-
tions that are linear in Ig4;, I4i(i = 1,...,m). These can, in principle, be
solved through the inverse of a matrix that would be a function of the states
i E{n(z = 1,...,m). This inverse can be avoided if the following simplifi-
cation (usually not considered valid) is made:

Xy = X i=1,....m. (6.150)

With this simplification, (6.148) and (6.149) can be solved for Vje/% and
substituted into (6.147) to obtain

m

L+l = Y (G g+ iBl B ™) i=1,...,m (6.151)
k=1 ik ik
where G’ q jB’ od
k k

matrix relduced to “internal nodes”). This can easily be solved for Iy,
Ii(i = 1,...,m) and substituted into the differential equations (6.132)-
(6.139). Substitution of I, I into (6.142) also gives V; as a function of the
states (needed for (6.137)) so that the resulting dynamic model is in explicit
form without algebraic equations. We emphasize that the simplification of
(6.150) is usually not considered valid for most machines.

is an m x m admittance matrix (often called the
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6.6 Multimachine Classical Model

As in the single machine/infinite bus case of Chapter 5, the derivation of the
classical model requires assumptions that cannot be rigorously supported.
Returning to the multimachine two-axis model, rather than assuming Tém- =
0(@ = 1,...,m), we assume that an integral manifold exists for £y, E;,
Etgi, Ry, Vri(i = 1,...,m) that as a first approximation, gives each E(’li
equal to a constant and each (E7; + (X;; — X;) 1) equal to a constant. For

this constant based on initial values E'?, I i E;OZ-, we define the constant
voltage
EP £ (B + (X} — X4)I5)% + (EL2)? (6.152)

and the constant angle
B
B (X~ Xz,

qr

A

5° 2 tan~)( g (6.153)

The classical model dynamic circuit is then shown in Figure 6.7. Because

dei Rsi (Idi + jlqi) €j(6i_n/2)

Figure 6.7: Synchronous machine classical model dynamic circuit (i =
1,...,m)

the classical model is usually used with the assumption of constant shaft
torque, we assume

Toni = oo. (6.154)

The classical model is then a 2m-order system (obtained from (6.110)—
(6.123))

do;

T Wi ws i=1,...,m (6.155)
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2Hi dwi

ws dt T3y, — Real (B! OH00) (1g; — j14;)e 70 2)]

—Trw; i=1,...,m (6.156)
and the algebraic constraints

0 = Vie! + (Rys + jX0) (Lgs + jIp0)e? @i %)
_Egoej(6i+6£0) i = 17 Rl (6157)
Vie (I — jl)e %2 4+ PLi(Vi) + jQui(Vi) =

n
Z V'Z,kaikej(ei—ek—wk) (6.158)
k=1
n .
PLi(Ve) + JQri(Vi) = Y ViViYige! Vi 0kmoin)
k=1
i=m+1,...,n. (6.159)
As before, for given functions Pr;(V;) and Qr;(V;), the n + m complex al-
gebraic equations must be solved for Vi, 0;(i = 1,...,n) and Iy, I4(i =
1,...,m) in terms of the states §;. The currents can easily be explicitly

eliminated by solving either (6.157) or (6.158) and substituting into the dif-
ferential equations and remaining algebraic equations. This would leave only
n complex equations to be solved for the n complex voltages Viel%.

The Special Case of “Impedance Loads”

In some cases, this classical model can be put in explicit closed form with-
out algebraic equations. We make the special assumptions about the load
representations

Pri(Vi) = kpyV? i=1,...,n (6.160)
Qri(Vi) = koaVi i=1,...,n. (6.161)

In this case, the loads and Rg; 4 j X, can be added into the bus admittance
matrix diagonal entries to obtain the following simplified algebraic equations
for the classical model with “constant impedance” loads

1

I+ il)ed0i=3) — = plopi(di+dye)
( di TJ qz) (Rsi+]XC,li) i

1 .
eyl =1,... 162
o Xy e A= b (6.162)
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1 n )
0 = — : ;o 7(0;+05° zk —l—jB Vkejak
(Rsi +]Xc/l) kgl
i=1,. (6.163)
0 = Z (Gl + jB) Vel i=m+1,...,n (6.164)

where G}, + jBl, is the ikth entry of the admittance matrix, including all
“constant impedance” loads and 1/(Rs; + jX);) on the ith diagonal.
Clearly, all of the Vje/%(k = 1,...,n) can be eliminated by solving
(6.163) and (6.164) and substituting into (6.162) to obtain m complex equa-
tions of the form

(Igi + jIa)e’ %72 = S (@ d+jBred)E’°e’(5k+5) (6.165)
k=1

where G; ed T jB; od is the ikth entry of an m x m admittance matrix (often
ik ik
called the matrix reduced to “internal nodes”). Defining
A .
Oclassical = Oi+0; i=1...,m (6.166)

the multimachine classical model with constant impedance loads is found by
substituting (6.165) into (6.156):

dé

% = wi—ws i=1,....,m (6.167)
QHZ' dwi 7
we dt Thi — Z EZ{OE//COG;ed cos(d¢lassical; — 5classicalk)
ik
/ / / .
- Z £ oEkoB ed sin(classical, — 5classicalk)
k=1 zk
_TFWz' 1= 1, oo, M. (6168)

The classical model can also be obtained formally from the two-axis model
by setting Xy, = X7;, and Tom; = Ty = Tj; = 00(i = 1,...,m), or from

qoz
the one-axis model by setting X ; = de and quZ =0,TcH; = Tém- =o0(i =
1,...,m). In this latter case, ¢/° is equal to zero, so that dclassical 1S equal

to d; and EJ° is equal to Ei(i = 1,...,m).
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6.7 Multimachine Damping Torques

As in the single machine/infinite bus case of Chapter 5, the multimachine
flux-decay and classical models do not have explicit speed-damping torques.
The friction and windage torque term could be specified as

Trw = Dpww or Dpyw? (6.169)

While this would provide some damping, the effect of all damper windings
has been lost in the reduction process. As in the single machine/infinite bus
case, it is possible to justify the addition of speed-damping torques. The
mathematical derivation of these damping torque terms proceeds in a direct
extension to the multimachine case. For example, the integral manifold
for each machine E/;, must be approximated more accurately, as done in
Section 5.7. The resulting improved integral manifolds have the following
general form:

m
Eélz = Z foik((si - 5]67 E[/p,a ;k)
k=1
m
T} > f1i6(8; = Oks Efy Bl Egais Egar, wi,wy,)  (6.170)
k=1

where fo;1, is the same as (6.131) written after elimination of I,. The func-
tions f1;; contain all the speeds of all machines. Rather than use the compli-
cated form of (6.170), it is customary to simply recognize that this additional
term involving speeds will contribute speed-damping torques, which can be
approximated by

Tpi = Y Dig(wp — ws) (6.171)
k=1

with D;; treated as a constant. The swing equation for each machine would
then be

2HZ dw,-
wg dt

= Twvmi —TeLpc; — Tpi — Trw; (6.172)

with TerEc; and all other dynamics evaluated using the simple integral man-
ifold approximation for E/, in (6.131). In order of accuracy, it is emphasized
that the most accurate model would keep all damper-winding dynamics. The
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second most accurate model would use a good integral manifold approxima-
tion for the damper windings (6.170). The least accurate model would use
the crude integral manifold for the damper windings (6.131), together with
a constant Djj, cross-damping torque term (6.171).

6.8 Multimachine Models with Saturation

The dynamic models of (6.10)—(6.24), (6.85)—(6.100), (6.110)—(6.123), (6.132)
—(6.144), and (6.155)—(6.159) began with the assumption of a linear mag-
netic circuit. In order to account for saturation, it is necessary to repeat this
analysis with the saturation functions included. For this case, we assume the
saturation functions of [37], given in (3.204)—(3.209). With these functions
and the assumption that saturation does not significantly affect time scales,
the stator/network transients can still be formally eliminated to obtain the
same dynamic circuits of Figures 6.2 to 6.4 and the following multimachine
dynamic model:

dE,- (X/-—X”-)
Thi—L = —Fl— (Xai — X)) [T — ~ BBl (g
doi dt qi ( d dz) [ d (X[/h _ Xési)2 (T/Jld
+ (Xl — Xosi)Lai — E;z)] - S](c?i + Eya;
i=1,...,m (6.173)
A4 .
dE/, (Xgi — Xgi)
T T di gt XZ'—X,- [Z._M
a0t g¢ di +( q qz) [ q (X(/]Z _ sti)2
2
(Voqi + (Xjs = Xesi)Igi + Elp) | + SPy)
i=1,...,m (6.175)
7 d¢2qi _ ) / / NT . 5 —
Tqu dt == _w2qz - Edl - (qu - XZSZ)IQZ 1= 1, “e e ,m (6176)
do; .
T Wi ws i=1,...,m (6.177)
2Hz dwi (X&/ - Xﬁsi) / (Xc/l — Xél/)
ws di M= (X = X)X, = Xpy) i1

(ng - XZSZ') ’ 7
SR LA D)/ " U—_ N
(X[;Z - XZsi) @ (X[;Z - XZSZ’) ¢2ql '

(X0~ XU gl — Trwi i=1,...,m  (6.178)

(Xgi — Xg)
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dE .
TE: dj;dl = —(Kgi+Sei(Efai))Efai + Ve i=1,...,m
dRy; Kpi .
TFZ dt = RFZ T Efdz 2—1,...,m
dVg; KK
TAiWRZ = Vri+ KaRpi — —o—T By,
Fi
FEAi(Vier; = Vi) i=1,...,m
dT i .
TCHiTMZ = —Tyi+Psyi i=1,...,m
dPsy; 1 (wz' ) .
Tsyi——— = —Pgy;+Poi——|——1 =1,...
SVi dt svi + £y RDi Ws 1 ’ , M
with the limit constraints
me < Vr SVERX d=1,....m
0 < PSVigPSW i=1,....,m

and the algebraic constraints

0 = Vie + (R + XG) (L + jLi) e
(X0 — Xosi)
- X” D¢ Iy IR RN kiay o/
( ) (X/ XZsi) di

(Xc:l/z XZSZ)E +] (X,dz — Xdz) wldi ej(cﬁ—%)
(Xdz Xﬂsz) (X — Xesi)

=1,.
Viedti (Idz — jlz)e” j(6i—1T) + Pri(Vi) + §Qri(V7)

Z VinYikej(ei—Gk—Mk) 1=1,....m
k=1

n

Z VZ.VkYZ.kej(@i—‘)k—OQk)
k=1

t=m+1,...,n

Pri(Vi) +3QLi(Vi)

and finally the saturation function relations
2 A Yy :
S 2 Sl =1, m
@ A ai(Xgi — Xesi)
e |7 |(Xai — Xesi)

Semi(IWf]) i=1,....m

K= Xp)
(X{]z - XZSZ’) e

(6.179)

(6.180)

(6.181)
(6.182)

(6.183)

(6.184)
(6.185)

(6.186)

(6.187)

(6.188)

(6.189)

(6.190)
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where
W 2 R e)E i=1,. (6.191)
" A (Xc,llz XZSZ) (Xdz Xt/ilz) .
.2 7]5 T =1,..., 192
Vi = 0 Xy 0 (X~ Xga) m (6.192)
i A (Xl/]/z - XZSZ) / (X/ X//)
= i — T hoii=1,..., 6.193
¢qz (X[/ﬂ — Xys) di T (X/ Xﬁsz)¢2q P = m ( )

and Ss,; are given nonlinear functions that are zero at [1)/| = 0 and increase
exponentially with [¢7|.

With our choice of saturation functions, the special case of impedance
loads still leads to an explicit set of differential equations without algebraic

(2)

equations. This should be clear, since the only added terms are .S Fdi and

S%, which are assumed functions of dynamic states. This will not impair the
elimination of currents and voltages needed to obtain the reduced admittance
matrix formulation. If saturation of network transformers were considered,
this elimination would involve nonlinearities in algebraic states that would

make an explicit formulation difficult, if not impossible.

The Multimachine Two-Axis Model with Synchronous Machine
Saturation

To obtain a two-axis model with saturation included as above, we again
assume that Ty, and T/, are sufficiently small so that an integral manifold
exists for each v14; and 1. A first approximation of the fast damper-
winding integral manifold is found by setting T/ . and 7. equal to zero in

qoi
(6.174) and (6.176) to obtain

0 = —tai+Ey — (Xg — Xeoi) gy i=1,...,m (6.194)
0 = —hogi — E — (X;Z- — Xesi)lyi i=1,...,m. (6.195)
When used to eliminate 114; and 124, the synchronous machine dynamic

circuit is changed from Figure 6.2 to Figure 6.5, giving the following multi-
machine two-axis dynamic model with synchronous machine saturation:

doz d qi di di)Ltdi fdi fdi
i=1,....m (6.196)
E,
P T B+ (Xg — X! i + 5% i=1,...,m (6.197)

i3 1qi

qot dt
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% = wi—ws i=1,...,m (6.198)
QHZ' dwi
—(X[/]Z - XC/lZ)Idz[qz - TFWi 1= 17 oo (6199)
dEgq; .
Tri gt = —(KEi+SEi(Efdi))Efdi +Vsii=1,...,m (6.200)
dez Kp; .
T i = —_ : — 1, ey 2 1
Fi Ry + Tr, { m (6.201)
dVRZ‘ KAZKFZ
Tai = —Vgri + KgiRyp; — Erg;
A 7 Vri + KaiRy Tri rdi
+ Kai(Viet; = Vi) i=1,...,m (6.202)
dT v .
ﬂm2£4 = Ty+Psyii=1,....m (6.203)
dPsv; 1w .
Toy;—— = —Pgy; + Pc; — — -1 =1,...,m(6.204
SViT oy svi+ ¢ R <ws ) v m ( )
with the limit constraints
vmln < Vr SVERX i=1,....m (6.205)
0 < Pgy; < Pgl/%x i=1,....,m (6.206)

and the algebraic constraints
0 = Viejei + (Rsi +]Xdz)(1dz +JIqZ)eJ( %)
—[Eg + (X/ — Xai)lgi + 1By, Je/0im3)
i=1,. (6.207)
Vie” (L — quz)e g + Pri(Vi) +jQri(Vi) =

Z ViViYpped O0emoin) =1 m (6.208)

k=1
Pri(Vi) +jQui(Vi) = D ViViYel G Okmon)
k=1
i=m+1,...,n (6.209)
and finally the saturation function relations
E/
3 A .
$$:Wwww)mywm (6.210)

o® & —Eu(Xe — Xusi)

4 Semi([0l]) i=1,....,m  (6.211
WS T (X = X emi VD (6.211)
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where

W 2 (EZ+ERDT i=1,..,m. (6.212)
We have made the assumption that when v14; and 194; are eliminated by the
approximate integral manifold of (6.194) and (6.195), the saturation function
can be approximated by using ¢y, ~ Ep;, 1y; ~ —Ej;. This prevents 4 or
I,; from entering the saturation function explicitly.

As before, the special case of impedance loads still leads to a dynamic
model in explicit form without algebraic equations, because the saturation
functions are assumed to be functions of only the dynamic states E’, and
B,

The Multimachine Flux-Decay Model with Synchronous Machine
Saturation

To obtain a flux-decay model with saturation included, we again assume

that 77, is sufficiently small so that an integral manifold exists for each E;.

A first approximation of this integral manifold is found by setting Tém- equal
to zero in (6.197) to obtain:
0= —El+ (Xoi — Xi) Iy + ST i=1,...,m. (6.213)

As in the single machine/infinite bus case, there is now a problem, since
(6.213) must be solved for each E!, (recall that each Sg) is a function of E/;

1
and E{ZZ) While we could simply carry (6.213) along as another algebraic
equation, we can again recognize that since we have already approximated
the integral manifold (and, of course, neglected all off-manifold dynamics)
we may as well simplify further and set SSZ- ~ 0. This gives the following

flux-decay model with saturation only in the field axis.

dE’,
Tc,loiﬁ = _E(,]i — (Xai — Xgi)lai — S](‘%i)i + Eyai
i=1,...,m (6.214)
dé;
d—t’ = wi—w, i=1,....m (6.215)
2H; dw;
c— = Ty — Ejly — (Xgi — X)Ll — Trw
ws dt
i=1,....,m (6.216)
dEyq;

TE 4

i —(Kgi+ Sei(Efai))Efai + Vi i =1,...,m (6.217)



150 CHAPTER 6. MULTIMACHINE DYNAMIC MODELS

dRy; Kp; .
Tr; = “Ry+- LB i=1,...
Fi dt sz + TFZ fdi ) ,
dVpgi Ko Kp;
Tai 7 © = —Vgi+KaiRp — #Efdi
+KAZ(VYI'ef7‘_‘/Z) Z.Zla""m
dT i .
TCHZ'TZ = —Tyi+Psy; 1=1,...,m
dPsy; 1 <W7j ) .
Tey,———— = —Poy; +Pr; ——— | — —1 =1,...
SVi— svi+ Foi Rpi \ o, 7 N

with the limit constraints

and the algebraic constraints

0 = Viel% + (Ryi + jX05) (Tas + jI,:)e? %2
~[(Xgi = X)Ly +J'E;i]€j(6i_%) i=1,...,m
Vied %Iy — jI,:)e 7% =3) - Pry(Vi) + jQri(Vi) =

n
S ViViYied Utean) =1 m
k=1

Pri(Vi) +jQri(Vi) = Y ViViVyed Oimooiw) j =1, m

k=1
and finally the saturation function relation

5(4) _

= Semi(EL) i=1,...,m.

(6.218)

(6.219)

(6.220)

(6.221)

(6.222)
(6.223)

(6.224)

(6.225)

(6.226)

(6.227)

As before, the special case of impedance loads still leads to a dynamic
model without algebraic equations, since the additional saturation terms are

functions only of the dynamic states E:]i’

There is little point in trying to incorporate saturation into the multi-
machine classical model, since it essentially assumes constant flux linkage.
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6.9 Frequency During Transients

The steady-state relationship between voltages and currents in loads clearly
depends on frequency. For inductive loads, the reactance increases with fre-
quency. For induction motors, the nominal speed increases with frequency.
During transients, frequency does not have any meaning, since voltage and
current waveforms are not pure sinusoids. It is, however, possible to define a
quantity during transients that reflects the concept of frequency and is equal
to frequency in the sinusoidal steady state. This can be done by consider-
ing the algebraic variables Vp;, Vi, introduced earlier in the synchronously
rotating reference frame together with their polar forms:

Vpi+iVoi = V' i=1,...,n. (6.228)

From the inverse transformation, the scaled abc voltagesare (with Vp; = 0):

Vi = V2Vicos(wst+6;) i=1,...,n (6.229)
2

Vbi = \/§V2 cos <wst + ‘9@ — %) 7= 1, Lo, n (6.230)
2T .

Vi = \/EVZ cos <Wst+‘9i+ ?> 1 = 1,...,n. (6.231)

We emphasize that these forms are valid for both transient and steady-state
analyses. In general, V; and 6; will both change during a transient. A logical
definition of a “dynamic frequency” is
vy D w20 i=1,...,n. (6.232)
dt
If the multimachine system is in synchronism with all machines turning at
a constant speed, the system frequency is equal to this dynamic frequency
(possibly above or below wg). During transients, each bus will have a dy-
namic frequency determined by df;/dt. We emphasize that this definition is
only one of many possible such quantities that have the property of being
equal to true frequency in steady state.

Adding frequency dependence into the load model by using Pr;(V;, wq;),
Qri(Vi,wg;) instead of Pr;(V;), and Qr;(V;) requires that 6;(i = 1,...,n)
become dynamic state variables. This is done by simply adding the following
n additional differential equations:

do;

= wai —ws t=1,...,n. (6.233)
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The n dynamic frequencies wy; are algebraic variables that must be elim-
inated together with all other algebraic variables (Ig4;, 4, Vi). Since this
normally cannot be done easily, it is customary to avoid making the 6; dy-
namic states by approximating the frequency dependence. This is done by
keeping each wy; constant over one time step of numerical integration (At)
as

0:(t) — 0t — A)

s 234
At +w (6.234)

wai(t) =~

where t is the current time. In this method, the 6; remain as algebraic vari-
ables and are simply monitored at each time step to update the frequency-
dependent terms of Pr;(V;, wg;) and Qr;(Vi, wg;) for the next time step.

6.10 Angle References and an Infinite Bus

The multimachine dynamic models of the last sections have at least one
more differential equation than is needed to solve an m machine, n bus
problem, because every rotational system must have a reference for angles.
To illustrate this, we define the angles relative to machine 1 as

1>

o
o’

5 —6 i=1,...,m (6.235)
0;—6, i=1,....n (6.236)

1>

with derivatives for the new dynamic states

oy

et 2

. 0 (6.237)
o}

d_tl = wi—w 1=2,...,m. (6.238)

Inspection of the algebraic equations that accompany all of the previous
models will reveal that all angles can be written in terms of §; and ¢;. This
means that the full system models have the same form as before, with the
following modifications:

e Replace §; with ¢ (and 8] = 0).
e Replace 6; with 6.

e Replace wy in the time derivative of §] with w.
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With this formulation, the order of the system is formally reduced by 1,
since

5 = 0. (6.239)

While &} remains at zero for all time, wq changes during a transient. The
original d; can be obtained by integrating wi — ws over time. The original
§;i(i=2,...,m)and 6;(: = 1,...,n) can be recovered easily from 4/, 6; and
&} through (6.235)—(6.236), if desired.

The dynamic system order can be further reduced either if H; is set to
infinity (machine 1 has constant speed) or if speeds do not explicitly appear
on the right-hand side of any dynamic equations (no speed-damping torques
and no governor action). This could be formally done by defining

1>

WiSwi—w i=1,...,m (6.240)

so that

aw

o i=1,...,m (6.241)

and w] replaces w; as a dynamic state. In this case, there is no need to include
either the angle or the speed equation for machine 1, since all other dynamics
would depend only on /(i = 2,...,m) and w}(i = 2,...,m). This situation
also arises when the only speed terms on the right-hand side appear in the
swing equations with uniform damping (H;/D; = Hy/Dy i,k =1,...,m).

A common transformation used in transient stability analysis is the
center-of-inertia (COI) reference. Rather than reference each angle to a
specific machine (i.e., d1), the COI reference transformation defines the COI
angle and speeds as

A 1 &
0, = — M;0; 6.242
CcCOI MT ; 307 ( )

1 m
= — M;w; 6.243
wcor My ; Wi ( )

where
A m

My £ Y M, (6.244)
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and
2H;
M; 2 . (6.245)
Ws
The COl-referenced angles and speeds are
A A .
(5,' = 52'_5001 z:l,...,m (6246)
GO 2 wi—weor i=1,...,m. (6.247)

With the introduction of dcor and weor, it is possible to use these as dy-
namic states together with any other m — 1 pairs of COI-referenced mechan-

ical pairs. Choosing 2,...,m, the new mechanical state-space would consist
of écor, weor, 6, wi(i = 2,...,m). This would require the elimination of
01 and @ in terms of dcor, woor and 0;, W;(i = 2,...,m). The resulting

system would have Mp multiplying the time derivative of woor. Since Mp
represents the total system inertia, it is usually quite large relative to any
single M;. For this reason, it is often taken to be infinity, in which case
the COI mechanical pair is eliminated, reducing the dynamic order by 2. It
is important to emphasize that simply using COI-referenced variables does
not, in itself, reduce the dynamic order. The reduction requires the use of
COl-referenced variables together with the approximation that My is infin-
ity. The resulting swing equations are complicated by the COI reference,
since an inertia-weighted form of “system” acceleration is subtracted from
each machine’s true acceleration.



Chapter 7

MULTIMACHINE
SIMULATION

In this chapter, we consider simulation techniques for a multimachine power
system using a two-axis machine model with no saturation and neglect-
ing both the stator and the network transients. The resulting differential-
algebraic model is systematically derived. Both the partitioned-explicit (PE)
and the simultaneous-implicit (SI) methods for integration are discussed.
The SI method is preferred in both research grade programs and industry
programs, since it can handle “stiff” equations very well. After explaining
the SI method consistent with our analytical development so far, we then
explain the equivalent but notationally different method, the well-known
EPRI-ETMSP (Extended Transient Midterm Stability Program) [70]. A
numerical example to illustrate the systematic computation of initial condi-
tions is presented.

7.1 Differential-Algebraic Model

We first rewrite the two-axis model of Section 6.4 in a form suitable for
simulation after neglecting the subtransient reactances and saturation. We
also neglect the turbine governor dynamics resulting in T,s; being a con-
stant. The limit constraints on Vg; are also deleted, since we wish to con-
centrate on modeling and simulation. We assume a linear damping term
Trwi = Dj(w; —ws). The resulting differential-algebraic equations follow
from (6.196)—-(6.209) for the m machine, n bus system with the IEEE-Type
I exciter as

155
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1. Differential Equations

dE!, .
Tc/loid—tq = —E{;z’ — (Xai — X)lai + Epgy i=1,....m (7.1)
dE}), ,
i dtd = —Eu+Xg—Xp) g i=1,...,m (7.2)
% = wi—ws i=1,...,m (7.3)
QHZ' dwi
o ar = Dwis Egila — Egily — (Xg — Xgi)Lailyi
—Dj(w; —ws) i=1,...,m (7.4)
dE g )
Tr:i d;”d — —(Kpgi+ Spi(Eai))Erai +Veii=1,...,m  (7.5)
dRy; Kp; .
Tr; 7t = Rfl-i- T Efdz i1=1,....,m (76)
dVgi K i Kp;
Tai dt = —Vgi+ KAzsz - TﬂEfdl + KAZ(‘/I'efZ' - ‘/;)
i=1,...,m. (7.7)

Equation (7.4) has dimensions of torque in per-unit. When the stator
transients were neglected, the electrical torque became equal to the
per-unit power associated with the internal voltage source.

2. Algebraic Equations The algebraic equations consist of the stator al-
gebraic equations and the network equations. The stator algebraic
equations directly follow from the dynamic equivalent circuit of Fig-
ure 6.5, which is reproduced in Figure 7.1. Application of Kirchhoff’s

X Ry; (i + jlgi) O™ = Iy +jlg;
— Y Y\
A% i
’ ’ ’ + .
[£;+x gi—X i)l A (Vi +jVgi) @D
+jE] SO = Vi ePi= Vi +jVy;

Figure 7.1: Synchronous machine two-axis model dynamic circuit (i =
1,...,m)
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Voltage Law (KVL) to Figure 7.1 yields the stator algebraic equations:

(a) Stator algebraic equations
0 = Viel% 4 (Rgi + jX0) (Las + jI,:)e?®—3)
—[Eg + (X5 — Xo) Igi + J'E;i]ej(&_%)
i=1,...,m. (7.8)
(b) Network equations

The dynamic circuit, together with the static network and the loads, is
shown in Figure 7.2. The network equations written at the n buses are

) (5 v, )
(14 +][qi) O = g i = Ipi+Jjlg;

o
de;- R,\'i

—0 ! m+ 1 @—
r I PLiner (Vm+1)

° ° +1Q1 a1 Vins 1)

PL,' (Vi)"'jQLi(vi) ° Network
I=Yyv o
= [ )
jxd;n R
r PL,,, (Vn)"'jQLn (Vn)
PLm (Vm)
+70pm Vi)

Figure 7.2: Interconnection of synchronous machine dynamic circuit and the
rest of the network

in complex form. From (6.208) and (6.209), these network equations
are

Generator Buses

Viel'i(Iap — jla)e 78 + Pri(Vi) +jQri(Vi) = D ViViYiel @ 0kmoin)
k=1
i=1,...,m (7.9)
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Load Buses

PLi(Vi) +jQui(Vi) = > ViViYael Om0moin) j =m +1,... n. (7.10)
k=1

In (7.9), V;ed% (14 — qui)e_j(5i_”/2) 2 Pgi + jQgi is the complex power
“Injected” into bus i due to the generator. Thus, (7.9) and (7.10) are only the
real and reactive power balance equation at all the n buses. Equation (7.9),
which constitutes the power balance equations at the generator buses, shows
the interaction of the algebraic variables and the state variables d;, E[’] and
E!,.. We thus have

79

1. Seven differential equations (d.e.’s) for each machine, i.e., Tm d.e.’s

(7.1)~(7.7)).

2. One complex stator algebraic equation (7.8) (two real equations) for
each machine, i.e., 2m real equations.

3. One complex network equation (7.9) and (7.10) (two real equations)
at each network bus, i.e., 2n real equations.
We have 7m + 2m + 2n equations with z = [z} ...zl ]! as the state vector
where v; = [E,; Ej 6 wi Erai Ry Vri]! as the state vector for each
machine. y = [I§_, V' 6" is the set of algebraic variables where

Licg = o I LamIgm]'
V o= WVi... V), o 0=1[01...6,), V=[Vi...V,].

Functionally, therefore, the differential equations (7.1)—(7.7), together with
the stator algebraic equations (7.8) and the network equations (7.9)—(7.10),
form a set of differential-algebraic equations of the form

[y, u) (7.11)
0 = glay) (7.12)
u = [uf .. ul])t with u;p = [ws Tni Vieg)' as the input vector for each

machine. We now formally put (7.1)—(7.10) in the form (7.11) and (7.12).
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7.2 Stator Algebraic Equations

There are several different ways of writing the stator algebraic equations (7.8)
as two real equations for computational purposes. The idea is to express I,
I in terms of the state and network variables. Both the polar form and the
rectangular form will be explained.

7.2.1 Polar form

In this form, the network voltages appear in polar form. If we multiply (7.8)

us

by e~/ (%=3) and equate the real and imaginary parts, we obtain

Eg—Vi sin (0; —0;) — Reilgi + Xl = 0 i=1,...,m (7.13)
Ellll — V; COS((gi — 92) — Rsini - X&Z[dl = 0 1= 1, . ,m(714)

We define

1>

Zq—qi-

Ry —XI;
X éli Ry

Then, from (7.13) and (7.14):

Lai _ -1 | By — Visin(d; — 0;) .
[ Iqi ‘| - [Zd—q,z] [ E(/ZZ _ ‘/Z COS((SZ' . 02) 1= 1, e ,m. (715)

Equations (7.13) and (7.14) are implicit in I4;, I, whereas in (7.15) they
are expressed explicitly in terms of the state variables x; and the algebraic
variables V;, #;. Thus

[ §dl ] :hpi(xi,Vi,Gi) 1= 1,...,m. (7.16)
qi
7.2.2 Rectangular form
This can be easily derived by recognizing the fact that

V= Vp; +3Voi = Viel% = V; cos 6; + jV; sin ;. (7.17)
By expanding (7.13) and (7.14) and noting from (7.17) that Vp; = V; cos0;

and Vg; = V;sinf;, we obtain the implicit form in rectangular coordinates
as
Eélz — Vpisind; + VQi cosd; — Rsilg; + X;ifqi = 0 (718)
Efn- — Vpicosd; — Vgisind; — Reilyi — Xylys = 0. (7.19)
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To obtain the explicit form, Iy, Iy in (7.18) and (7.19) can be expressed

in terms of Ef;, Ey;, i, Vpi, and Vi;. Alternatively, the right-hand side of

(7.15) is expanded as

I — aod]") Ey | Zao ]! V;(sin d; cos 0; — cos §; sin 6;)
I, o d=q;i E(’n- d—g;i Vi(cos d; cos@; +sind;sinb;) |-
(7.20)

Using the fact from (7.17) that Vp; = V;cos8; and V; = V;sin6;, (7.20)
becomes

Idi _ 1-1 Eélz - 1-1 sin 51 — COS 52 VD,'
[ Iqi 1 = [Zd—q,z] [ Etlzl [Zd—q,z] cosd; sind; VQi (7.21)

= hm'(l'i, VDi7 VQZ) 7 = 1, cee, M. (722)

Note that (7.21) can be obtained directly from (7.18) and (7.19). Symboli-
cally, (7.16) or (7.22) can be expressed for all machines as

hy(x,V,8) or hy(x,Vp,Vg)
h(z,V). (7.23)

Iig

1>

7.2.3 Alternate form of stator algebraic equations

In much of the literature, a block diagram representation of stator equa-
tions is done through an “interface” block that reflects the machine—network
transformation. The machine—network transformation is given by

_Fdi]_lsin@- —coséi] lFDi_ i m (7.24)

Fyi cosd;  sind; Foi
and
[ Fp; | _ sind; cosd; Fy ] .
Foi ] N [ —cosd; sind; Fi i=1...,m (7.25)

where F' may be either I or V. Figure 7.3 is a graphical representation of

(7.24) and (7.25) illustrated for the voltage V; = Vie/%. Using (7.24) in
(7.21), we obtain

Ty 1| ElYy—Vai .
= |Zg_qi v i=1,...,m 7.26
[Iqi ] [ q,] [ Et/n_qu ( )
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Oa
q
Vi
\\ 0
Voi f-————7---:>% Vel
e
S - i
o7 Vo 777 D
e !
Vai
d

Figure 7.3: Graphical representation
Thus
El. —Vy Ly .
¢ = |Zg_q¢i i1=1,....m 7.27
[E;Z_%z‘| [ q7]llqi ( )

The interface block in the block diagram in Figure 7.5 is now consistent with
(7.24), (7.25), and (7.26). Note that, in this formulation, algebraic equation
(7.26) or (7.27) is in machine reference only, whereas (7.24) and (7.25) act
as an “interface” between the machine and the network.

7.3 Network Equations

The network equations can be expressed either in power-balance or current-
balance form. The latter form is more popular with the industry software
packages. We discuss both of them now.

7.3.1 Power-balance form

The network equations for the generator buses (7.9) are separated into real
and imaginary parts fori =1,...,m

IdiVi sin (52 - HZ) + Iqui COS (52 - 91) + PLZ(VZ)

— Z ViViYicos  (0; — Op— o) = 0 (7.28)
k=1
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14;V; cos (0i — 0;) — IiVisin  (6; — 6;) + Qri(V3)

Z ViVilYipsin - (0; — 60— o) = 0.
k=1

For the load buses, a similiar procedure using (7.10) gives for i = m+1,...,

PLZ Z ZVVlekcos(G —Ok (sz) = 0
k=1

Qri(Vi) ZVVkYstme —Op— o) = 0.

(7.29)

(7.30)

(7.31)

Note that load can be present at the generator as well as at the load buses.
The network equations (7.28)—(7.31) can be rearranged so that the real power
equations appear first and the reactive power equations appear next, as

follows.

Real Power Equations

[din’ sin(é,- — 02) + Iqui COS((SZ' — HZ) + PLZ(VZ)

Z ViViYicos(0; — Ok— i) =0 i=1,...,

k=1

Pri(Vy) ZVVkszCOS(e—Hk k) = 0 i=m+1,...,

k=1

Reactive Power Equations

I14;Vicos(6; — 0;) —I,Visin(6; — 0;) + Qri(Vi)

Z ViViYigsin(0; — O0p— o) =0 i=1,...,

k=1

Qri(V;) ZVVkYkSID(H—Qk—O(,k) = 0i=m+1,...,

k=1

Thus, the differential-algebraic equation (DAE) model is:

m(7.32)

n(7.33)

m(7.34)

n. (7.35)
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1. The differential equations (7.1)—(7.7)
2. The stator algebraic equations of the form (7.23) in the polar form
3. The network equations (7.32)—(7.35) in the power-balance form

The differential-algebraic equations are now written symbolically as

i = folw,Ig—q,V, u) (7.36)
Iiy = hz,V) (7.37)
0 = go(w,1q_¢, V). (7.38)

Substitution of (7.37) into (7.36) and (7.38) gives

= fl(x7
0 = gi(z,

w) (7.39)
). (7.40)

<l <l

Note that (7.40) is in the power-balance form. This is the differential-
algebraic equation (DAE) analytical model with the network algebraic vari-
ables in the polar form. We prefer this form, since in load-flow equations the
voltages are generally in polar form. Simplified forms of this model result
from the reduced-order model of the synchronous machine as well as the
exciter, which will be discussed later.

7.3.2 Current-balance form

Instead of the power-balance form of (7.32)—(7.35), one can have the current-
balance form, which is essentially the nodal set of equations

T = YAV (7.41)

where Y y is the n x n bus admittance matrix of the network with elements
Y = Yige?™¥ik = G+ j By, I is the net injected current vector and V is the
bus voltage vector. Depending on how I is expressed, it can take different
forms, as discussed below. Equation (7.41) can also be derived from (7.9)—
(7.10) by dividing both sides of the equation by V;e/% and then taking the
complex conjugate as follows.

Pri(Vi) — jQri(Vi)

. j 51'—7'('
(Lai + JIqi)ej( 2+ Vie—ifi

n
— Z Yikej%kvkej@k
k=1
1=1,....m (7.42)
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Pri(V;) = iQri(V;

n
Vo0 ) - D Ve # Vi =m+1,... . (7.43)

k=1

These equations are the same as (6.83) and (6.84). Equations (7.42) and
(7.43) can be symbolically denoted in matrix form as

To(lig2,V) = YAV (7.44)
The other algebraic equation is
Ig—q = h(z,V). (7.45)
Substitution of (7.45) in (7.36) and (7.44) leads to the DAE model

T = fi(z,V, u)
Ii(z,V) = YpNV. (7.46)

Example 7.1

We illustrate the DAE models discussed in the previous sectionwith a nu-
merical example. We consider the popular Western System Coordinating
Council (WECC) 3-machine, 9-bus system [73] shown in Figure 7.4. This
is also the system appearing in [74] and widely used in the literature. The
base MVA is 100, and system frequency is 60 Hz. The converged load-flow
data obtained using the EPRI-IPFLOW program [75] is given in Table 7.1.

Table 7.1: Load-Flow Results of the WECC 3-Machine, 9-Bus System

Bus # Voltage (pu) Pg Qc -Pr | —Q1
(pw) | (pw) | (pu) | (pu)
(swing) 1.04 0.716 | 027 | - =

(P-V) | 1.02529.3° | 1.63 | 0.067 | - -

(P-V) | 1.025/4.7° | 0.85 |-0.109 | - -

(P-Q) | 1.026/—22° | - - -
") | 0.996 £ —4.00| - ~ 125 ] 05
(") | 1.0132-37° | - ~ 1 09| 03
) 1.026/3.7° - - - -
(")
(")

1.016£0.7° - - 1.00 | 0.35
1.032/2.0° - - - -

© 00 3O Uk W -
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Gen 2 Gen 3
18.0KV Gen 2 Station C Gen 3 13.8 KV
1.025 pu 230 KV 230 KV 230 KV 1.025 pu
~ Z =0.0085+j0.072 Z=0.0119+j0.1008 ~
Y = 0.4+0.0745 Y = 0.4j0.1045
13.8
163 MW Tap = 180 - Tap = 538 85 MW
@ 2= 006255 N Tl @ Z=/00586 @
Y= 0400 2|8 o2 Y = 0.40.0
bt 100MW &3
Gl B 35MVAR = |&
bl I 2|2
> )
Station A - Station B
230 KV T ® ® — 230KV
125 MW _ . _ . 90 MW
SOMVAR Z=0.014j0.085 Z=0.017+j0.092 30 MVAR
Y = 0.4j0.088 Y = 0.450.079
Gen 1
65 230 KV @
Tap = 230
Z=0.+j0.0576
Y= 0.+j0.0 Gen 1
— L 165KV D
1.04 pu

@ Slack Bus

Figure 7.4: WECC 3-machine, 9-bus system; the value of Y is half the
line charging (Copyright 1977. Electric Power Research Institute. EPRI
EL-0484. Power System Dynamic Analysis, Phase I. Reprinted with Per-
mission. )

The Ybus for the network (also denoted as Y x) can be written by in-
spection from Figure 7.4 and is shown in Table 7.2. The machine data and
the exciter data are given in Table 7.3. The exciter is assumed to be identical
for all the machines and is of the IEEE-Type I. Define 2w—1il = M;. Assume

that 1% = 0.1, ]\[/)[—22 = 0.2, and ]\[/)[—33 = 0.3 (all in pu).



1 2
1 /—j17.361 0
2 0 —j16
3 0 0
4| j17.361 0
5 0 0
6 0 0
7 0 j16
8 0 0
9 0 0
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3 4 5
0 §17.361 0
0 0 0
—j17.065 0 0
0 3.307 —1.365
—739.309  +;11.604
0 —~1.365 2.553
+511.604 —317.338
0 ~1.942 0
+510.511
0 0 —1.188
+45.975
0 0 0
§17.065 0 0

(=Rl

—1.942
+510.511
0

3.224
—j15.841
0
0

—1.282
+45.588

Table 7.2: Y y for the Network in Figure 7.4

7 8
0 0
j16 0
0 0
0 0
—1.188 0
+55.975
0 0
2.805 —1.617
—j35.4460 +4;13.698
—1.617 2.772
+713.698 —;23.303
0 —1.155
+59.784

The differential equations corresponding to (7.1)—(7.7) are

where

Eq; |
Ey;

o;

w;
E_ fdi

9

0

0
417.065

0

0

—1.282
+35.588
0

—~1.155
+59.784
2.437
—j32.154

0

(7.47)

E,
Ey;
d;
= [A]| wi |+ Ri(Ey, Ey, Ergi,lai 15, Vi) + Ciug
Erg;
Ry;
_VRZ'_
i=1,2,3
- -1 1
7000 0 o
0 =0 0 0 0 0
0 0 0 1 0 0 0
RS A
Tw; TEq
0O 0 0 0 f;—g = 0
RIS
1=1,2,3

(7.48)
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Table 7.3: Machine and Exciter Data

Machine Data

Parameters M/C1 M/C 2 M/C 3
H(secs) 23.64 6.4 3.01
Xa(pu) 0.146 0.8958 1.3125
X/ (pu) 0.0608 0.1198 0.1813
Xq(pu) 0.0969 0.8645 1.2578
X(’Z(pu) 0.0969 0.1969 0.25
T}, (sec) 8.96 6.0 5.89
Téo(sec) 0.31 0.535 0.6

Exciter Data
Parameters Exciter 1  Exciter 2 Exciter 3
Ky 20 20 20
T4 (sec) 0.2 0.2 0.2
Kg 1.0 1.0 1.0
Tg(sec) 0.314 0.314 0.314
Kp 0.063 0.063 0.063
Tr(sec) 0.35 0.35 0.35
SEi(Efdi) = 0.0039¢1:5%5Frai = 1,2,3

i=1,2,3.

I _(Xdz_X&i)Idz
Tz;oi
(Xqi_X;i)qu
Tém‘
0
Ri = Sel(Blyla + Byily) + (Xgi — Xi) Lai L)
_ SEi(Efai)
TE;
0
— K,
L TA?‘/i
[0 0 0
0 0 0
-1 0 0 Wy
G = % M% 0 Jui=| Tari
0 0 0 Viefi
0 0 0
Ka;
i 0 0 T—::i l

167

(7.49)
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Substituting the numerical values, we obtain

Ay

Ay

Ry

[ —0.112

OO OO OO

—0.167

OO OO OO

O O OO O O
OO O OO oo

—0.009514;
0
0

—8(Eq Loy + By 1)
—0.29741 11
—0.0124¢1-5%5Esa1
0
—100V;

OO OO o oo

0.112 0 0 |
0 0 0
0 0 0
0 0 0
-3.18 0  3.185
0.514 —2.86 0
~18 100 -5 |
0.167 0 0 |
0 0 0
0 0 0
0 0 0
—3.185 0  3.185
0514 —2.86 0
~18 100 -5 |
0.17 0 0 |
0 0 0
0 0 0
0 0 0
—3.18 0  3.185
0514 —2.86 0
~18 100 -5 |
i —0.131 5
1.251,
0
_29-5(E[/12]d2 + E;zfqg)
—2.27I 1o
—0.0124¢1-555E a2
0
I —100V5

(7.50)
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—0.191,3
1713
0
o —62.6(E£l3[d3 + E/3]q3)
Ry = _4'3Id3[q3q (7.51)
—0.0124¢1-5%5E a3
0
I —100V4 |
0o 0 o0 | 0 0 o0 ]
0 0 0 0O 0 0
-1 0 0 -1 0 0
C, = |01 8 0 |,Co=1]02 25 0 |,
0 0 0 0 0 0
0 0 0 0O 0 0
| 0 0 100 | 0 0 100
0o 0o o0 |
0 0 0
-1 0 0
Cs = |03 626 0 (7.52)
0 0 0
0 0 0
0 0 100 |

The stator algebraic equations corresponding to (7.13) and (7.14) (assuming
Rs; =0) are

El} — Vi sin(dy
E;l — Vicos(d1 — 61

(61— 6
(

Ely — Vasin(da — 05
(
(
(

+0.09691,, =
— 0.0608I; =
+0.19691,, =
—0.1198Ip =
+0.2500L,3 =

—0.18131,3 =

E;z — Vo cos(by — 09

E&g — Vgsin 53 — 93
E[']3 — V3 cos(d3 — O3

S N N N N
o oo o o o

(7.53)

The network equations are (with the notation 6;; = 6; — ;) as follows. The
constant power loads are treated as injected into the buses.
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Real Power Equations

Id1V1 Sin(51 — 91)

[dQVQ sin((52 — 92)

[d3V3 sin((53 — 93)

— 17.36‘/4‘/1 sin 941

—1.25 + 1.36V5 V4 cos 054

—0.9 + 1.94V5V} cos Og4

- 16V7V2 sin 972

—1+ 1.62Vg V7 cos g7

- 17.065Vg Vg sin 993

-

+ o+ o+

CHAPTER 7. MULTIMACHINE SIMULATION

1,1V cos(61 — 61)

17.36V1Vysinf14 = 0

1,5V5 cos(d2 — 62)

16.00V2Vz sinfy7 = 0

1,3V3 cos(d3 — 63)

17.06V3Vy sinf39 = 0

3.31V,2 4 1.36V, V5 cos f45 — 11.6V, V5 sin Oy5
1.942V, Vi cos 046 — 10.51V Vg sinfy = 0
11.6V5V, sin 054 + 1.19V5 V7 cos 57

5.97VsVz sin 057 — 2.55V2 = 0

10.51VsVy sin g4 — 3.22V2

1.28Vi Vg cos Ogg — 5.59V Vg sin g9 = 0
1.19V7 V5 cos O75 — 5.98V7 V5 sin 075

2.8V + 1.62V; Vg cos O78

13.7V7Vgsinf7s = 0

13.7VsVz sin fg7 — 2.77V

1.16Vg Vg cos fgg — 9.8V Vg sinflgg = 0
1.28Vy Vi cos g — 5.59Vy Vi sin Ogg

1.15V4 Vg cos Ogs — 9.78Vg Vg sin fgg

2.4VZ = 0. (7.54)

Reactive Power Equations

Id1V1 COS(51 — 91)

IdQVQ COS((52 — 92)

I43V3 cos(d3 — 03)

17.36V4 Vl COS 941

1,1V sin(0; — 61)

17.36V1 Vi cos 14 — 1736V =0
12V sin(dy — 62)

16V4 V7 cos Ba7 — 16V =0
1,3V3sin(d3 — 63)

17.07V3Vy cos B39 — 17.07VE =0
39.3V,2 4+ 1.36V, Vs sin 5
11.6V4 V5 cos 045 + 1.94V, Vi sin Oy4
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—0.5 4+ 1.37V5V, sin Os4

—0.3 + 1.94‘/6‘/21 sin 664

16V7V2 (¢0)] 972

—0.35 + 1.62‘/23‘/7 sin 687

17.065Vy V3 cos fgs3

o+ + o+

+ 4+ + +

171

10.52V4 Vg cos B4 = 0

11.6V5Vy cos 054 — 17.34V3

1.19V5 V7 sin 057 + 5.98V5 V7 cos 57 = 0

10.51V5 Vy cos fpq — 15.84VF

1.28V5 Vg sin fgg + 5.59V5 Vy cos fgg = 0

1.19V7 V5 sin 675 + 5.98V7 V5 cos 075

35.45V2 + 1.62V; Vg sin f7g 4 13.67V7 Vg cos 7 = 0

13.67Vs Vz cos g7 — 23.3VZ + 1.15VgVy sin fgg

9.78VsVy cos flgg = 0

1.28Vy Vs sin Ogg + 5.59Vy Vi cos fgg

1.16Vy Vs sin fgs + 9.78V, Vg cos fgg — 32.15V = 0.
(7.55)

It is easy to solve (7.53) for Iy;, 4i(i = 1,2, 3), substitute them in (7.47) and
(7.54)—(7.55), and obtain the equations © = fi(z,V,u) and 0 = g;(x, V).
This is left as an exercise for the reader. ]

Example 7.2

In this example, we put the DAE model with the network equations in the

current-balance form.

The differential equations (7.47) and the stator algebraic equations (7.53)
are unchanged. The network equations are

where

To(ld_q,l‘,V) =

I(Ij—q,2,V)=Y NV

(7.56)

[ (Ig1 + jI)e?@=m/2) ]
(Ig +j[q2)ej(5z—7r/2)
(Igz + j1,3)e?%3=m/2)
0 + 50
(—1.25 + j0.5)/_7*§
(—0.9 +j0.3)/Vg
0 + 50
(=1 +50.35)/Vy

| 0+ 50

(7.57)

It is an easy exercise to substitute I4—, from (7.53) in (7.57) to obtain the
network equations for the form I;(x,V) =Y yV. O
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7.4 Industry Model

We now present an equivalent but alternative formulation that is used widely
in commercial power system simulation packages [72]. The principal differ-
ence is in terms of suitably rearranging the equations from a programming
point of view. This will be referred to as the industry model. From (7.15)
we have

Lii | _ 1y o1 | By Visin(i—6:) |, _
[ Iqi ‘| - [Zd—q,z] [ E:]z B 74 COS((SZ' o 0@) 1=1,...,m. (758)

Also from (7.21):
I B 1| Bl B q—1 | sind; —cosd; Vi
[ I, ] = [Zi-q.l [ Ey; Za—q. cosd; sind; Voi
i=1,...,m. (7.59)

Hence, I4;, i are functions of either (Ey;, Ey;, 6;, Vi, 0;) or (Egy;, Ey;, 6i, Vi, VQi)-

For ease in programming, the electric power output of machine i in (7.4) is
defined as

1>

= Popi(Ey, E;,6:, Vi, 0;)or Peyi(Ely, EVyL 65, Vi, Vigi) - (7.60)

qi’ qi’

if we substitute for Iy and I, from (7.58) or (7.59). The terminal voltage
V; is

Vi= VB + V3= V2+ V2 (7.61)
We define two vectors
E2[EWE) ... EyEndy .. 6] (7.62)
and
W 2 [Inlg - TanIgnPer - .. PomVi .. Vil (7.63)

E' is a subset of the state vector z and W is a vector of algebraic variables.
With these definitions, we can express the differential equations (7.1)—(7.7)
as

&z = F(z,Wu). (7.64)
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The stator algebraic equations (7.58) or (7.59), together with (7.60) and
(7.61), are expressed as

W = G(E,V) (7.65)
The network equations from (7.46) are
I(E,V) =YV (7.66)

since F is a subset of the vector . Thus, assembling (7.64), (7.65), and
(7.66) results in

t = F(z,Wu) (7.67)
W = G(E,V) (7.68)
I(E, V) = YyV. (7.69)
Equation (7.67) has the structure
&= A(x)r + BW + Cu (7.70)

The only dependency of A(z) on x comes through the saturation function in
the exciter. A(z), B, and C are matrices having a block structure with each
block belonging to a machine. G contains the stator algebraic equations and
intermediate equations for P.; and V; in terms of (E, V). This formulation is
easy to program. Alternatively, we can substitute (7.68) in (7.67) to obtain

z = fi(z,V,u)
Ii(z,V) = YNV (7.71)

which is precisely equal to (7.46).

The DAE model with the network equations in the current-balance form
is the preferred industry model, since the network-admittance matrix has
to be refactored only if there is a network change. Otherwise, the initial
factorization will remain. The DAE model with network equations in power—
balance form (discussed in Section 7.3.1) has the advantage that the Jacobian
of the network equations contains the power flow Jacobian, a fact useful in
small-signal analysis and voltage collapse studies, as discussed in Chapter 8.

Equations (7.67)—(7.69) can be interpreted as a block diagram, as shown
in Figure 7.5.
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I
I
I

Mechanical --@§——® Electrical

Supply Pressure Speed
Control Control Control

Voltage Network Load
Control Control Control

Fuel Furnace
- & i Turbine‘gg Generator [t Network HEEI [oads

Source R
Boiler

¢— Energy [———®=

Control
Center

Figure 7.5: Block diagram conceptualization of (7.67)—(7.69)

Example 7.3

We will express the 3-machine system in Example 7.1 in the form of (7.67)—
(7.69). Thus (7.67)—(7.68) become

m.1 A1 0 0 I Bl 0 0 W1
To = 0 Ay O xr9 | + 0 By O Wy | +Cu
ig 0 0 A3 I3 0 0 Bg W3

(7.72)
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where
- —1 1 -
T(ioi 0 0 T(;oi 0 0
—1
0 o 0 0 0 0 0
0 0 0 1 0 0 0
A, = 0 0 0 0 0 0 i=1,2,3
0 0 0 0 _(KEi+7~?E.i(Efdi)) 0 Tl :
KEZ' 1 Ei
0O 0 0 0 Ep L 0
-K Iijz KI:@' -1
L 0 0 0 0 T Tai T -
(7.73)
'j&§£ﬁ 0 o 0 ]
. (Xqi—X1,)
T 0 0
B 0 0 0 0 o3
i 0 0 7 0 T
0 0 0 0
0 0 0 0
Ka;
I 0 0 0 —Fa |
Ly
W, = | L i=1,2,3 (7.74)
Z Pez b) b . .
Vi

C' is Diag(C;) and u = Diag(u;), where C; and u; are given by (7.49). The
stator algebraic equations and the intermediate equations corresponding to
(7.68) are

1-1 E/, q-1| sind; —cosd; Vpi
W [Zd—q.] l E[’n- Za—q. cosd;  sind; Voi
| Eydai + Byl + (X — X0 Laidgi
Vi + Vi
i=1,2,3. (7.75)

If Iy and I, in P.; are expressed from the first two equations, then W; =
Gi(E;,V;). A similar substitution for Iy;, I; in (7.56) and (7.57) leads to

71(1',7) = ?NV (776)
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Substitution of numerical values in the above equations is trivial, and is left
as an exercise for the reader. O

Before we discuss the important issue of initial condition computation,
we consider two simplifications that yield models far simpler than the two-
axis model. They are also amenable to a network theoretic approach. Using
these simplifications, we develop later (1) the structure-preserving flux-decay
model, (2) the structure-preserving classical model, and (3) the internal node
model using the classical machine model and constant impedance loads.
Both (1) and (2) can have nonlinear load representations.

7.5 Simplification of the Two-Axis Model

Two simplifications can be made in the two-axis model—one regarding X,
and X7, and the other regarding the nature of loads. These can be done
independently or together, resulting in simplified models.

Simplification #1 (neglecting transient saliency in the synchro-
nous machine)

Transient saliency corresponds to different values of X[, and X;,. If X;; =
X/, then the stator algebraic equation (7.8) is simplified as

0 = Vie!% + (Ryi + jX5) (Las + 1) /2

The equivalent circuit for machine ¢ is shown in Figure 7.6.

JXdi Ryi (g + jIgi) @R
VW -
(Edi +jEqi) @O v

Figure 7.6: Equivalent circuit with Xg, = X,
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The machine—network transformation gives

(Ezlii‘FjEt/;z')ej(éi_ﬂm = Ep;+JjEg; (7.78)
(Igi + jI)e? ™D = Ip; 4 jIg;. (7.79)

Thus, with all the quantities in the synchronous reference frame, we have
the equivalent circuit shown in Figure 7.7. Writing the KVL equation for

iXdi R Ipi+ jlp;

VWV "
’ . ’ e
ELi+IEG) Vi

Figure 7.7: Equivalent circuit (all quantities in network reference frame)

Figure 7.7, we get (Ep,; + jEp;) = (Rsi + jX ;) (Ipi + jlgi) + Vie’®, which
is equivalent to (7.77).

In the differential equations, the expression for electric power P.; given
by (7.60) is simplified as

P, = Etlizldz+E¢/]Zqu (780)

It can be verified that the right-hand side of (7.80) is also equal to E7),Ip; +
Eé?iIQZ- by taking the complex conjugate of (7.79), multiplying it by (7.78),
and equating the real part.

This assumption of X/, = X, [’ﬂ- is often called “neglecting transient saliency.”
The advantage is that, in the equivalent circuit, all variables are in the net-
work reference frame, and it is particularly useful in the current-balance
form of Section 7.3.2. In (7.46), the algebraic equations that are equivalent
to (7.42) and (7.43) can be directly expressed in terms of Ip;, I, and V;
using (Iy; + j1g:)e? /2 = Ip; + jlg;.
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Simplification #2 (constant impedance load in the transmission
system)

Here, the loads are assumed to be of the constant impedance type, i.e.,

Pri(V;) = kpuV{ (7.81)
Qui(Vi) = kquVi. (7.82)

Then
PLi(Vi) +jQui(Vi) = (kpai + jkqai) Vi (7.83)

Since (Pr; + jQri) = VJ*LZ-, where I; is the injected current,
Vil = Vi (kpai + jkg). (7.84)

But V> = V,;V; and conjugating (7.84), we obtain

~i
h

(kp2i — jkg2) = L= Ty (7.85)

(3

<l

Because of the orientation of V; and Iy;, there is a negative sign in front
of the load admittance 7;; in (7.85). From Figure 7.8, we can verify that

+ —

1 Li=1Ipi+ilLgi

=I

Yii

-

Figure 7.8: Load admittance representation

vV

)
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Hence

_ (PL(Vi) —iQLi(Vh))
Yis = Viz :

This is consistent with the fact that Pr; and Q)r; are injected loads. ¥, is the
complex admittance due to the loads. Since (Iy; +qu,-)ej(5i_”/2) = Ipi+jlg,,
for i = 1,...,m and using (7.86), the network equations (7.42) and (7.43)
become

(Ipi+jIgi) = > Vi Yyel™k 45, Vie® i=1,...,m (7.87)

k=1
0 = Z Vkejek}/ikej(xm + yiiv;;ejei i =m+ 17 cees N
k=1
i.e.,
n
‘ . -, )
Ipi+ jloi = Y Vie " Yje™  i=1,....m
k=1
n
. ., )
0 = D VeV i=mtl.n (7.88)
k=1
where
s ! y . .
YielSh = YyelXs ik
L y .. —
VielSu = Yel™i 4y,

Equation (7.88) can be written as

I,

(7.89)

~il
s
I
-

O e




180 CHAPTER 7. MULTIMACHINE SIMULATION

where I1,...,I,, are the complex injected generator currents at the generator
. - . ..
buses. Let the modified Y7, denoted as Y be partitioned as

m | n—m
m ?1 ’ ?2
Y= - - = . (7.90)
n—m ?3 ’ ?4
Since there are no injections at buses m + 1,...,n, we can eliminate them
to get
L Vi
: = [?red] (791)
Im Vin

where ¥V oq = (V1 — V2V ' V).

Note that we can make either or both of the above two simplifications. If
we make only the constant impedance approximation, then we can obtain a
passive reduced network, as in Figure 7.9, but the source will be a dependent

JXn Ry

AN —— o

e

.]XCIZZ R2 . —
E(HY (B P T

v v JX g R, :
_fm_/\/\/\/i_. m
E,,

Figure 7.9: Network reduced at generator nodes and X/, = X, (’12-

one, as in Figure 7.1. On the other hand, if we make the assumption X/, =
X[’]Z- only, then we obtain the source representation, as in Figure 7.9, but
the network equations will remain in (7.42) and (7.43). If we make both
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assumptions, then we obtain a passive reduced network, as in Figure 7.9,

and the voltage E; = Ep; + iEg;-

Example 7.4

Based on the load-flow results in Table 7.1, convert the loads as constant
admittances, and then obtain a Y',q representation (all in pu).

Solution

Note that the load specified in Table 7.1 is the negative of the injected load.

Hence, at buses 5, 6, and 8, g, is given by

— 1.25—70.5 .

a7 -9—30.3 .
U = l(ng% = 0.877 — 50.292
Uss = [wote? = 0-969 — 50.339.

These elements are now added to the Yss5,Y¢s, and Ygg elements of the

Ybus matrix in Table 7.2, resulting in Y as

1 2 3 4 5 6 7 8
1 /—j17.361 0 0 §17.361 0 0 0 0
2 0 —j16 0 0 0 0 j16 0
3 0 0  —j17.065 0 0 0 0 0
a | j17.361 0 0 (3.3074 (—1.3652  (—1.9422 0 0
—739.3089) +;11.604) +;10.5107)
5 0 0 0 (—1.365 (3.814 0 (—1.188 0
- +511.604) —;17.842) +55.975)
Y =6 0 0 0 (—1.942 0 (4.102 0 0
+510.511) —j16.133)
7 0 j16 0 0 (—1.188 0 (2.805 (—1.617
+55.975) —j35.464) +;13.698)
8 0 0 0 0 0 0 (—1.617 (3.741
+713.698) —;23.642)
9 0 0 §17.065 0 0 (—1.282 0 (—=1.155
+45.588) +59.784)

(—1.282
+55.588)
0

(—1.155
+59.784)
(2.437
—j32.154)

Yred is obtained by eliminating the buses 4 to 9 from Y'. The resulting

Y eq 18 given by
1.105 — 74.695 0.096 + j2.253 0.004 4 52.275

Yied = | 0.096 4 j2.257 0.735 — j5.114 0.123 + j2.826
0.004 + j2.275 0.123 + j2.826 0.721 — j5.023

With this simplification, we have I = ?redV.
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7.6 Initial Conditions (Full Model)

The initial conditions of the state variables for the model in Section 7.1 are
computed by systematically solving the load-flow equations of the network
first, and then computing the other algebraic and state variables. The load-
flow equations are part of the network equations, as shown below.

Load-Flow Formulation

We now revert to the formulation of the network equations that were written
as real and reactive power-balance equations at the nodes, i.e., (7.32)—(7.35).
We reproduce them below by writing real power equations first, followed by
the reactive power equations

1;V; sin(éi — 92) + Iqui COS((Z’ — 91) + PLZ(VZ)

— Z ViViYigcos(0; — Ok — o) =0i=1,...,m(7.92)
k=1

Pri(V;) = Y ViViYigcos(0; — Oy — i) =0 i=m+1,....n (7.93)
k=1
14 Vicos(0; — 6;) — 14V sin(0; — 6;) + Qri(Vi)

= ViViYsin(0; — 0p— o) =0 i=1,....m  (7.94)
k=1

Qri(V;) — Z ViViYipsin(6; — 0x— i) =0 i=m+1,...,n. (7.95)
k=1

It follows from the dynamic circuit in Figure 7.10 that
Poi+jQai = Vilg = Vie!" (I — jli)e O =/2)
= Vi(cosO; + jsin®;)(Ig; — jlgi)(sind; + jcos ;). (7.96)

Now we equate the real and imaginary parts along with the use of trigono-
metric identities. It can be shown from (7.96) that

Pai = 14V; sin(éi — 92) + qu‘/z COS((gi - 92) (797)
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and

QGi = Idz‘/z COS((S,' — 02) — qu‘/; sin(éi — 02) (798)

Tai & Igie? = (L + jlg)e! O/ (7.99)

is the injected generator current at the generator bus in the synchronous
reference frame. Figure 7.10 explains the equations at the generator bus.

Igi= (Ig; + j1;) 707)

Xdi Ry; \
e
A4 ~
+
[Eg+ (X ;=X 3) I P (V) N
1 i +j 0 (V) Vie'™
+qui] ej(5l_n/2) JOri Vi

Figure 7.10: Synchronous machine dynamic circuit

We further define net injected power at a bus as

Pi(éialdiqui)‘/iyei) +jQi(6i7]di7[qi7 V;Ael) =
(Pai + PLi(Vi)) +3(Qai + Qui(Vi))  i=1,...,m. (7.100)

Thus, the power-balance equations at the buses 1,...,n are

Pi(6i, iy 1gi, Vir 0:) = > ViViYig cos(0; — Op— ocir,)
k=1
i=1,....m (7.101)

Pri(V;) = > ViViYicos(0; — Op— ocir,)
k=1
i=m+1,....n (7.102)
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Qi(6i, Laiy 1gi, Vir 0:) = > ViViYiesin(0; — Op— ocir,)

k=1

i=1,...,m (7.103)
QLi(V;) = > ViViYisin(6; — 0,— oxir)

k=1

i=m+1,... .n (7.104)

Standard Load Flow

Load flow has been the traditional mechanism for computing a proposed
steady-state operating point. We now define standard load flow as follows,
using (7.101)—(7.104). Loads are of the constant power type.

1. Specify bus voltage magnitudes numbered 1 to m.
2. Specify bus voltage angle at bus number 1 (slack bus).
3. Specify net injected real power P; at buses numbered 2 to m.

4. Specify load powers Pr; and Q1; at buses numbered m + 1 to n.

The following equations result from (7.101), (7.102), and (7.104) chosen
according to criteria (3) and (4). These are known as the load-flow equations.
Thus, we have

n i=2,...,m
0 = —P+ Z ViViYik cos(0; — Op— o) (PV buses) (7.105)
k=1
n i=m+1,....,n
0 = —Pr+ Z ViV Yir cos(6; — 0k — o<ik) (PQ buses) (7.106)
k=1
n i=m+1,....,n
0 = —Qui+ Z ViVie Y sin(6; — 0 — i) (PQ buses) (7.107)
k=1
where Pi(i = 2,...,m), Vi(i = 1,...,m), Pp;(t = m+1,...,n),Qri(i =
m+1,...,n), and 6; are specified numbers. The standard load flow solves

(7.105)—(7.107) for Oa,...,0n, Vint1,- .., V,. After the load-flow solution, we
compute the net injected powers at the slack bus and the net injected reactive
power at the generator buses as

Pi+jQ1 = > ViViYyel @ —fmoar) (7.108)
k=1
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Qi = Y ViViYisin(l; —Op—ocip) i =2,...,m.(7.109)
k=1

The generator powers are given by Pg1 = P — Ppy and Qg = Q; — Qri(i =
1,...,m). This standard load flow has many variations, including the addi-
tion of other devices such as tap-changing-under-load (TCUL) transformers,
switching VAR sources, HVDC converters, and nonlinear load representa-
tion. It can also include inequality constraints on quantities such as Q; at
the generators, and can also have more than one slack bus. For details, refer
to [15, 16, 18].

One important point about load flow should be emphasized. Load flow
is normally used to evaluate operation at a specific load level (specified by
a given set of powers). For a specified load and generation schedule, the
solution is independent of the actual load model. That is, it is certainly
possible to evaluate the voltage at a constant impedance load for a specific
case where that impedance load consumes a specific amount of power. Thus,
the use of “constant power” in load-flow analysis does not require or even
imply that the load is truly a constant power device. It merely gives the
voltage at the buses when the loads (any type) consume a specific amount
of power. The load characteristic is important when the analyst wants to
study the system in response to a change, such as contingency analysis or
dynamic analysis. For these purposes, standard load flow is computed on
the basis of constant P(@) loads and usually provides the “initial conditions”
for the dynamic system.

Initial Conditions for Dynamic Analysis

We use the model in the power-balance form from (7.36)—(7.38)

& = folw,Iy—q,V,u) (7.110)
Iisg = h(@,7V) (7.111)
0 = golw,lu—g,V). (7.112)

It is necessary to compute the initial values of all the dynamic states and
the fixed inputs Ths; and Vrefi(i = 1,...,m). In power system dynamic
analysis, the fixed inputs and initial conditions are normally found from a
base case load-flow solution. That is, the values of V ..f, are computed such
that the m generator voltages are as specified in the load flow. The values of
Thy; are computed such that the m generator real power outputs Pg; are as
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specified and computed in the load flow for rated speed w,. To see how this
is done, we assume that a load-flow solution (as defined in previous section)
has been found, i.e., solution of (7.105)—(7.107). The first step in computing
the initial conditions is normally the calculation of generator currents from
(7.96), as I = Igieli = (Pgi — jQGl)/V;k

Step 1: Since Pg; = P, — Pr; and Qg = Q; — QLi:

I = (P — Pri) — 5(Qi — Qri))/(Vie %) i =1,...,m. (7.113)

This current is in the network reference frame and is equal to (14 + jly)
eI (i—m/2)

In steady state, all the derivatives are zero in the differential equations
(7.1)—(7.7). The first step is to calculate the rotor angles J; at all the ma-
chines. We use the complex stator algebraic equation (7.8) and the algebraic
equation obtained from (7.2) by setting E4 = 0. From the latter, we obtain

Ey=Xg— X))y i=1,...,m. (7.114)
Substitution of (7.114) in (7.8) results in
Viel® 4 (Ra + 5 X0) (Tas + jLg)e? /2
— [(Xgi = Xo)Lgi + (XL — X}V i + GEL]?O 2 = 0

i=1,...,m (7.115)
ie.,
Vie + Ra(Tgi + jlgs) /)
+ XL+ 1) O
— [(Xgi = X g + jER! P =00 =1,...,m (7.116)
le.,

Vi 4 Ryl + jlg)e O/
b XLyt X el G2
BTN =0, i= 1, m. (7.117)
Adding and subtracting jXqudiej (0i=7/2) from the left-hand side of (7.117)
results in
Vie! (R X)L + 1) O/
- j[(qu' - Xéli)ldi + E;i]ej(éi_“ﬂ) =0i=1,...,m.(7.118)
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Replace (Ig;+jly)e’ (%=7/2) by Ig;eY which is already calculated in (7.113):

Viel' 4+ (Ryi + jXgi) i€
= ((Xgi— Xp) Iy + Ep)e™ i=1,...,m.  (7.119)
The right-hand side of (7.119) is a voltage behind the impedance (Rg;+ jX¢;)
and has an angle d;. The voltage has a magnitude (E; + (Xgi — X};)14;) and

an angle §; = angle of (V;el% + (Ry; + jXqi)IGiej%’). The complex number
representation for computing §; from (7.119) is shown in Figure 7.11. This

Igi
d
Figure 7.11: Representation of stator algebraic equations in steady state

representation is generally known as “phasor diagram” in the literature and
“locating the ¢ axis” of the machine.

Step 2: §; is computed as §; = angle on (V;e’% + (R + 5§ X i) IGie?).

Step 3: Compute I4;, Iy, Vii, Vyi for the machines as

[di+qui = IGiej(%—cSi—l-w/?) i=1,...,m (7.120)
Vii+ 3§V = ViedG0Fm/2) =1 o, (7.121)

Step 4: Compute E/; from (7.27):

By =Vai + Railgi — Xyl i=1,....m (7.122)
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which from (7.114) is also equal to (X,; — X;)I,;. This serves as a check on
the calculations.

Step 5: Compute E; from (7.27)

By =Vgi+ Reily + Xjly  i=1,...,m. (7.123)
Step 6: Compute Efq; from (7.1) (after setting the derivative equal to
zero):

Epgi = Epi+ (Xai—Xp)ly  i=1,...,m. (7.124)
Step 7: With the field voltage Etg known, the other variables Ry;, Vg;

and V., can be found from (7.5)~(7.7) (after setting the derivatives equal
to zero):

Vri = (Kpi+ Sgi(Erai))Erai  i=1,...,m (7.125)
Kp; .
Ry = =B i=1,...,m (7.126)
Tri
Viet; = Vi+ (Vri/Ka;) i=1,...,m. (7.127)

Note that if the machine saturation is included, the calculation for Ey; and
Eéh- may be iterative. The mechanical states w; and Tyy; are found from (7.3)
and (7.4) (after setting the derivatives equal to zero):

wi = ws i=1,...,m (7.128)
Ty = Elyly +E;Z-Iq2- + (X;Z- — X il i=1,...,m. (7.129)

This completes the computation of all dynamic-state initial conditions and
fixed inputs. Thus, we have computed x(0),y(0), and u from the load-flow
data.

For a given disturbance, the inputs remain fixed throughout the simu-
lation. If the disturbance occurs due to a fault or a network change, the
algebraic states must change instantaneously. The dynamic states cannot
change instantaneously. Thus, it will be necessary to solve all the algebraic
equations inclusive of the stator equations with the dynamic states specified
at their values just prior to the disturbance as initial conditions to determine
the new initial values of the algebraic states.

From the above description, it is clear that once a standard load-flow
solution is found, the remaining dynamic states and inputs can be found
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in a systematic manner. The machine rotor angles §; can always be found,
provided that:

Vil + (R + jX i) g # 0 i=1,...,m (7.130)

If control limits are enforced, a solution satisfying these limits may not exist.
In this case, the state that is limited would have to be fixed at its limiting
value and a corresponding new steady-state solution would have to be found.
This would require a new load flow by specifying either different values of
generator voltages, different generator real powers, or possibly specifying
generator-reactive power injections, thus allowing generator voltage to be a
part of the load-flow solution. In fact, the use of reactive power limits in
load flow can usually be traced to an attempt to consider excitation system
limits or generator capability limits.

Example 7.5

For Example 7.1, compute the initial conditions. The solved load-flow data
are given in Table 7.1 (all in pu).

Machine 1
Step 1:
- Po1 — jQcn 0.716 — 50.27
Tedm — _
e v 1.040°
= 0.736/ — 20.66°.
Step 2:

51(0) = Angle Of(Vlejel + (Rsl —I—jqu)IGlej’Yl)
= Angle of((1.04/0° 4+ j0.0969)(0.736/ — 20.66°))
= 3.58°.

Step 3:
In+jlg = Ignee 7O/

= (0.736/ — 20.66°)(1/86.42°)
= 0.302+ ;j0.671
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In = 0302 I, =0.671
Var +5Vp = Viele /O
= (1.04/0°)(1/86.42°)
= 0.065 + 71.038
Vi = 0.065,V,; = 1.038.

Step 4:
Et/il = (qu - Xél)lql
= (0.0969 — 0.0969)(0.671)
= 0.

It can be verified that this is also equal to Vg + Rs1lqyn — X(’ﬂIql.

Step 5:
01 = Vg + Ralg + Xjla
= 1.038 + 0 + (0.0608)(0.302)
= 1.056.
Step 6:
Efdl = E[/ﬂ + (Xdl — Xclﬂ)fdl
= 1.056 + (0.146 — 0.0608)(0.302)
= 1.082.
Step 7:
Vri = (Kp1+0.0039¢"755Era)Bryy = (1.021)(1.082) = 1.105
K (0.063)
= —F1=|——=)1.082=0.1
Ry Ty L1 0.35 082 = 0.195
Vi1 1.105
= Vi+ 2L =104+ ——
Vrefl 1+ K al 04 + 20
= 1.095.

The mechanical input Thq is computed as follows:
T = Egpla+ Eply + (X — Xg)InIp
= (0)(0.302) + (1.056)(0.671) + (0.0969 — 0.0608)(0.302)(0.671)
= 0.716.
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Similarly, for other machines, we can compute the state and the algebraic
variables as

(52(0) =61.1° 53(0) = 54.2°
I =129 I;s = 0.562
Ip =0.931 I3 =0.619
Viz = 0.805 Vis =0.779
Vo =0.634 Vi3 = 0.666
E)y =0.622 Ely =0.624

', =0.788 'y =0.768

Efgs = 1.789 Etas = 1.403
Ry = 0.322 Rz = 0.252
Vea =1.902 Vrs =1.453

Viers = 1.12 Viers =1.09

Ty =163 Ty = 0.85.

Angle Reference, Infinite Bus, and COI Reference

As explained in Section 6.10, by taking one of the angles as a reference, the
order of the dynamic system can be reduced from 7m to 7m — 1. Further-
more, if the inertia constant on this reference angle machine is infinity, the
order of the system can be reduced to 7m — 2. This is also possible if the ma-
chines have zero or uniform damping. Finally, we can also use center-of-angle
formulation instead of relative rotor angle formulation. The center-of-angle
formulation is discussed in Chapter 9.

7.7 Numerical Solution: Power-Balance Form

The number of algorithms that have been proposed for the numerical solu-
tion of the DAE system of equations is very large. There are basically two
approaches used in power system simulation packages.

1. Simultaneous-implicit (SI) method.
2. Partitioned-explicit (PE) method.

The SI is numerically more stable than the PE method. It is also the method
used in the EPRI 1208 stability program known as the ETMSP (Extended
Transient Midterm Stability Program) program [70]. We illustrate the SI
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method on the WECC system with a two-axis model for the machine and
with the exciter on all the three machines.

7.7.1 SI Method

We illustrate with the differential-algebraic model in power-balance form.

& = folw,Iy—q,V,u) (7.131)
Iisg = h(@,7V) (7.132)
0 = golw,lu—g,V). (7.133)

All the initial conditions at ¢ = 0 have been computed. In the SI method, the
differential equations in (7.131) are algebraized using either implicit Euler’s
method or a trapezoidal integration method. These resulting algebraic equa-
tions are then solved simultaneously with the remaining algebraic equations
(7.132)—(7.133) using Newton’s method at each time step.

Review of Newton’s Method

Let f(z) =0 be the set of nonlinear algebraic equations, i.e.,

fl(l‘l,... ,SL’n) =0
fg(l‘l,... ,SL’n) =0

(7.134)
fo(x1, ... zn) =0.
Assume an initial guess xgo), . ,xﬁf). Expand the equations in a Taylor
series and retain only the linear term.
F(@) + 2 (x—z) ~ 0. (7.135)
ax SC::L‘(O)
Solving for x results in an improved estimate for x:
-1
50 = ) _ [% ] F(@©). (7.136)
0T | y— (o)

In general,

2D = k) [ g®=1 g (k) (7.137)
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where k is the iteration count and [J] = 55 1s called the Jacobian. In an
expanded version:

9h ... Of
ox1 Oxn
] = : ) (7.138)
Ofn ... Ofn
61‘1 61"”
Define
ArF) = pletD) _ (k) (7.139)

Equation (7.137) can be recast as follows:
[J®Az®) = —f(z®) k=0,1,2,... (7.140)

Equation (7.140) is a linear one and has to be solved for Az(*). Then from
(7.139)

2D = 20 L AW =0,1,2,... (7.141)

With an initial value of 2(?), steps corresponding to (7.140) and (7.141) are

. . max (k+1) .
repeated and at the end of each iteration compute 4 ’ fi(z )’ If this

is < € where € is the specified tolerance, the Newton iterates have converged.

Numerical Solution Using SI Method

Let the subscripts n and n 4 1 denote the time instants t,, and ¢,y1, respec-
tively. Then, integrating the differential equations in (7.131) from ¢, to t,,4+1
using the trapezoidal rule and solving the resulting algebraic equations with
the remaining algebraic equations at ¢,1, obtain

Tptl = $n+/ttn+1 fo(, Li—g, V,u)dt (7.142)
ie.,
Tpt1 = wn+Tt[fo(wn-i-hjd—q,n—i-lavn%—laun-i—l)
+ fo(Zn, La—gns Vi, tn)] (7.143)
= Ty gni1 — M(@ni1, Vi) (7.144)

= Go(Tn+1, la—gnr1, Vir1) (7.145)
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where At = t,11 — t,, is the integration time step. Rearranging (7.143)—
(7.145),

At —

[wn-l—l - Tfo(wn-l—ly Id—q,n—l—la Vn—i—la un—l—l)]

At —
_[$n + 7f0($ny Id—q,m Vi, un)]

A — —
= Fl (xn—i-la Id—q,n+17 Vn-‘,—l: Un+1, Tn, Id—q,na Vn: un)

= 0 (7.146)
— A —

Ii—gny1 — P(Tnt1, V1) = Fa(@ns, la—gngt, Viarr) =0 (7.147)
— A —

go($n+1, Id—q,n+17 Vn-‘,—l) - F3(wn+17 Id—q,n—l—la Vn—i—l) =0. (7148)

At each time step, (7.146)—(7.148) are solved by Newton’s method. The
Newton iterates are

m 2m 2n ()

(k) (k)

m(J1 J2 J3 AN F
2m | JaJs e Alygnir | =—| B (7.149)
2n \ Jr  Jg  Jg AV i1 Fy
T = o+ A (7.150)
k+1 k k
I[g_q7,2+1 = Ic(l—)q,n—H + Altg_)qmﬂ (7151)
(k+1 7k —(k
V£z+1 b= szll + AV;le (7.152)

where k is the iteration number at time step ¢,,41. wgﬂ)rl is the converged
value x,, at the previous time step. The iterations are continued until the
norm of the mismatch vector [Fy, Fy, F3)t is close to zero. This completes
the computation at time step t,,41.

If there is a change in reference input V.., or Tz, the DAE (differen-
tial algebraic equation) model can be integrated with known values of all
variables. But if there is a disturbance in the network, a different procedure
has to be adopted, as explained below.

Disturbance Simulation

The typical disturbance corresponds to a network disturbance, such as a
fault where the parameters in the algebraic equations change at ¢ = 0. The
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algebraic variables can change instantaneously, whereas the state variables
do not. Hence, at t = 04, with the network disturbance reflected in the net-

work equations, we solve the set of algebraic equations for I;_,(0+), V (0+)
as

I ,(04+) = R (x(0),V(0+)) (7.153)
0 = g/ (x(0),1_(0+),V(0+)) (7.154)

where the superscript f indicates that the algebraic equations correspond
to the faulted state. With the value of I;_,(0+),V (0+) so obtained, the
trapezoidal method is then applied. Note that the initial guess for the vector
[xtffl_qvt]t at time instant ¢,4; is the converged value at the previous time

instant, i.e.,

(0)

Tn+1 T
Ii—gni1 = | Iy—gn | n=0,1,2,... (7.155)
Vn+l Vn

If there is a change in generation or load, this is simply taken care of by
changing Pg; and Qg; or Pr; and Qp; in (7.153) and (7.154), and computing
I;_4 and V at t = 0+. If there is a short circuit at bus ¢, then set V; = 0

and delete _the P and @ equations at bus i from g,(z,Iq—4,V) to obtain
gg(x7jd—q7v)'
7.7.2 PE method

1. Incorporate the system disturbance and solve for V(0+), I4—,(0+) as
in (7.153) and (7.154).

2. Using the values of I;_,(0+), V(0+) integrate the differential equations

T = fo(xa Id—qy V)7 CC(O) =z° (7156)
to obtain z(1).

3. Go to Step 1 and solve for I;_,(1), V(1) again from the algebraic equa-
tions.

Iig(1) = K (2(1),V(1)) (7.157)
0 = gl(z(1), I4—,(1),V(1)) (7.158)
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4. Integrate the differential equations to obtain x(2), and again solve the
algebraic equation to obtain I4_,(2), V(2).

5. This procedure is repeated until ¢ = Tyogipeq OF there is a change in
the configuration. In the second case, a similiar procedure is followed.

The PE scheme, although conceptually simple, has numerical convergence
problems such as interface errors, etc. [73].

7.8 Numerical Solution: Current-Balance Form

In this section, we explain the industrial approach to implement the SI
method forming the structured approach to the problem. It is the basis
of the well-known ETMSP program of EPRI [70]. The current-balance ap-
proach is favored, since the bus admittance matrix is easily formed and
factorized. The DAE model from (7.36), (7.44), and (7.45) is

i = fo(z,Li—g,V,u) (7.159)
Iioq = h(z,V) (7.160)
I,(Ij—g, 2, V) = YnNV. (7.161)

The use of the SI method to solve these equations yields the set of algebraic

equations:
Fl (wn+17 Id—q,n—l—la Vn—i—la Un4+1, Tn, Id—q,n7 Vna un) = 0 (7162)

Fy(zps1,lg—gnt1,Vne1) = 0 (7.163)

7O(Id—q,n—&—la l'n—l—lyvn—i-l) = ?an—l-l- (7164)

Instead of treating x and 14—, as separate vectors, we form a new vector X =
[X1... X})' Associate Ig_q; with the respective x; so that X; = [«11f_ 1"
Equations (7.162) and (7.163) are replaced by

FM(Xn—i-lyVne+17un+1’XmVrf?““) = 0.

Also, we replace (7.164) by its rectangular equivalent I°(X,1,V,5 ) =
YN Vi1, where e stands for expanded form, i.e.,

I° = [Ipilgi... Ipnlgn)
Ve = [Vp1Vgi ... VouVonl'
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and Yy consists of 2 x 2 square matrices with real numbers. With this, the
application of Newton’s method yields the following equations.

[ AX, R
Acc Bavi : :
: AXm | _ | _Bem
Acem | Bavm AVY Vi
Cver -+ Cvem | Y§+Yf : :
L AV L Ry, |
(7.165)
The various elements of the Jacobian are defined as
A 2 OF A OFy
GGi — aXn—l—l,i’ GV — 8VTf+17Z'
A oI° .
g = - =1,2,...,
Cve 00Xy, ! "
and
or°
Y = ——
8Vn—i—l

For ease of understanding, V¢ can be considered as a vector (Vp;, V;)!, and
If = (Ipi, IQ,-)t. Yy becomes a 2n x 2n matrix of real elements. The right-
hand sides of (7.165) are the residuals. In Newton’s method for solving f(x)
= 0, the residuals at any iteration k are — f(z(*)). Y7 is computed as follows
(the suffix n + 1 is dropped for ease of notation):

YE S - [%} (7.166)
Y[ consists of 2 x 2 blocks of the type
9lp; 9lpi
- [ A ] . (7.167)
Vo o

The solution method to solve the linear equation (7.165) is as follows. We
recognize that the nonzero columns in Bgy; correspond to AV, and that
those in Cgy; correspond to AX;. Thus, from (7.165)

AX; = Agl;(Rai — BaviAV®) i=1,...,m. (7.168)
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From (7.165),

Yy +YFJAVE +) (CvedX:) = [Rf). (7.169)
=1

Substituting AX; from (7.168),

Y+ YE - (Cvaidge; Bovi) | [AV] = [RY]  (7.170)

=1

where R = R{, — Y7 CyaiAgs; Rai-

Thus, the algorithm first solves for AV® in (7.170) and then solves (7.169)
iteratively to convergence for AX;(i = 1,...,m). The same computations
are then repeated at the next time instant and so on.

Some Practical Details [70]

The Jacobian in (7.165) is expensive to compute at each iteration. Let Jffgl

be the Jacobian evaluated at t = t,,+1 and k represent the iteration count at
that time instant. Solving (7.169) and (7.170) results in

x (k+1) x (k) AX (k)
[ yelk+1) ‘| = [ (k) + Avel®) k=0,1,2,... (7.171)

The very dishonest Newton method (VDHN) holds the Jacobian in (7.165)
fixed for a period of time. Thus

{ng} AVelk)

AX®) ] _ [Rék)} (7.172)

where the time instant ¢ > n + 1.

This means that the initial Jacobian at t = ¢,41 is held constant for
some time steps after ¢,41. This reduces the overall cost of computation.
The choice of when to reevaluate the Jacobian is based on experience. The
Jacobian must be reevaluated at any major system change. Between time
steps, it is reevaluated if the previous time-step iteration was considered too
slow (took three or more iterations). Within a time step, a maximum of five
iterations are taken using the same Jacobian.
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Prediction [70]

Whenever a Jacobian is evaluated at the beginning of a time step, instead
of taking the converged values of the previous time step, we can use a lin-
ear prediction for generator variables and geometric prediction for network
voltages. Thus, at time instant t,,1, the initial estimate in the evaluation
of the Jacobian would be

X)) = X+ (X — Xoi) (7.173)

where X,,, X,,_1 are the previous converged values at the previous time steps.
For the network variables, each voltage initial guess is

(7.174)

n

e,

7.9 Reduced-Order Multimachine Models

While many types of reduced-order multimachine models are possible, we
discuss three specific ones.

1. Flux-decay model with a fast exciter. The network structure is pre-
served.

2. Structure-preserving model with a classical machine model.

3. Classical model with network nodes eliminated.

7.9.1 Flux-decay model

This model is widely used in eigenvalue analysis and power-system stabilizer
design. If the damper-winding constants are very small, then we can set
them to zero (i.e., there is an integral manifold for these states, as discussed
in Section 6.5), and we obtain from (7.2):

0 = —Eju+ Xy~ X))y  i=1...,m. (7.175)

We eliminate E!, from (7.4) and (7.8) using (7.175). The synchronous ma-
chine dynamic circuit is modified as shown in Figure 7.12. It is also com-
mon, while using the flux-decay model, to have a simplified exciter with one
gain and one time constant, as shown in Figure 7.13. The complete set of
differential-algebraic equations (7.1)—(7.10) becomes (assuming no governor
and no damping).
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X (145 + 1,

_fYYY\_\/\/\/\_,_.

R

Si

[(Xqi - Xd;) Iqi +qu,i] ej(S,'fﬂ:/Z) ’

+

) SiT2)

(Vi +Vgi) O = v ol

Figure 7.12: Synchronous machine flux-decay model dynamic circuit

Vieti T Ky Efy,

1+STA

Vi

Figure 7.13: Static exciter (one gain—one time constant)

Generator Equations

dE!, .
Taoi—g = By~ Xai = Xg)las + Brai i =1,.
@ = Ww; — Ws i:l,...,m
dt
2H; dw; :
wsl o = T = Egily = (Xgi = Xg) laslgii = 1,
dEt4; .
TAi dﬁdl = —Efdl—|—KAZ(‘/refz—V;)Z: 1,...,m.

..,m(7.176)

(7.177)

(7.178)
(7.179)
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Stator Equations

Assuming Ry = 0, and substituting for E/, from (7.175), we obtain the
stator equations (7.13) and (7.14) in polar form as

‘/i sin(éi — 92) — Xquqi =0 1= 1, e, (7180)
Vicos(6; — 0;) + Xglys —E,; = 0 i=1,...,m. (7.181)

Network Equations

The network equations can be written in the power-balance form as in Sec-
tion 7.3.1, or in the current-balance form as in Section 7.3.2.

Initial Conditions

The steps to compute the initial conditions of the multimachine flux-decay
model DAE system are given below.

Step 1 From the load flow, compute Igie?i asin (7.113) as (Pgi—jQai)/Vie 7.
Step 2 Compute §; as angle of [Vied¥ + X i Iqied ™).

Step 3 Compute w; = w, from (7.177).

Step 4 Compute Iy;, Iy; from (I + jlgi) = Igied(vi—oitm/2),

Step 5 Compute E(’n- from (7.181) as E(’n- = Vicos(0; — 0;) + X} 1a;.

Step 6 Compute Eyy; from (7.176) as Efg; = Ep; + (Xai — Xg;) Lai-

Step 7 Compute V g, from (7.179) as Vio¢, = i{fi + V.

(3

Step 8 Compute Ty, from (7.178) as Ty = E(’ZZ-IqZ- + (Xgi — X)) Lailgi-
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7.9.2 Structure-preserving classical model

To obtain the classical model, we set T, = oo and X,; = X/, in (7.176) and
(7.178), respectively. This results in E;i being a constant equal to the initial
value E{ﬁ Ignoring (7.176) and (7.179), the resulting differential equations
are

do; .

d_tl = w; — ws i=1,...,m (7.182)
2H; dw; .
wsl dtl = Twui — Egily i=1,...,m. (7.183)

These are known as the swing equations in the literature. The stator alge-
braic equations (7.180) and (7.181) are added after multiplying the former
by —j. We replace X,; by X}; and Ej; by E;?. Thus

Ey = Xg(lai + jlgi) + Vi(cos(d; — 0;) — jsin(é; — 0;))
= X} (Igi + jIgi) + Vie 7070, (7.184)
Equation (7.184) can be rearranged as

Ege?® = jX(Lai + )’ @) 4 Ve
= Xu(pi + jlgi) + Vie. (7.185)

This represents a voltage E; = E;Oiej‘;i of constant magnitude behind a tran-
sient reactance X, as shown in Figure 7.14. Henceforth, we will denote

jXx . Ipi+Jloi

= (Idi +j[qi) ei(Si—Tt/Z)
oYY\,

+

’7 O .
Eqi £5; CD V. /9
= EiLSi '

Figure 7.14: Constant voltage behind transient reactance

E°i = E;.
q 7
This forms the basis of the structure-preserving model which, is discussed
next.
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Structure-Preserving Model with Constant Voltage Behind Reactance

This model is widely used in structure-preserving transient energy function
and voltage collapse literature that uses energy functions. It consists of the
swing equations (7.182) and (7.183) and the network algebraic equations at
the nodes 1,...,n. In Figure 7.15, the n bus transmission network is shown

Ip1+jlp1=h

—@ | m+1 @—F—=<——

m+?2 @—f—e——

—@ 2
o Network o
. I_=_YNV .

R\

- o [ ) o
J Adm
n+m
Y —@m n @——e—
Em Ipm +j Igm r'/
=1In

Figure 7.15: Structure-preserving model with constant voltage behind reac-
tance

augmented by the constant voltage behind reactances at the generator buses
1,...,m. The generator internal nodes are denoted as n + 1,...,n + m.
The complex power output at the ith internal node in Figure 7.15 can be

expressed as

EI;, = E(E;-V,)/jXl)"
= B (EBie % — Vie %) /(=i X})
- Ixr T
di di
. Esz sin(di — 91) + . Ez2 EZVZ COS((SZ‘ — 91)
a Xy X X

((cos(d; — 6;) + jsin(d; — 6;))

) . (7.186)
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Alternatively,

EZT: = Eiej(si (Idz — qui)e_j(éi_W/Q)

Comparing (7.186) and (7.187), the real and reactive power output at the
generator internal nodes are given, respectively, by
E;V;sin(6; — 6;
Real powerByl, — Lovisin(di—6) (7.188)
Xai

I /
Xdz' Xdz'

Reactive powerE;1y; cos(d; — 6;). (7.189)

This shows that real power P is associated with I, and reactive power is
associated with I;. At the generator buses 1,...,m, we can express the
complex power due to the generators as

Poi+jQci = Vi,
VI = Ve [(Ei-Vi) /iXe]
= Vel (Eie_j(si — Vie_jei) /(=i X4)

. i V2
= LiVq i — 04 i —0i) o — S
E;V; (cos (0; — 6;) + jsin (6 ) XX
Ez‘/z sin(&i — (52) . —‘/;2 Ez‘/z COS(QZ' — (52)
= - / + T / :
Xdi Xdz' Xdz'
(7.190)
Therefore
_EiVi sin(@i — 52) EZVZ sin(éi — 92)
o X, X, 1y
—V2 Ez‘/z COS(QZ' — (52)
P = ! . 192
R (S (7192

The structure-preserving model consists of the swing and the network equa-
tions (neglecting resistance) as

8 = w;— ws i=1,...,m (7.193)
2H; | E;V; sin(5; — 6;)

= T —
ws Wi M Xc/h

i=1,...,m (7.194)
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Pri(V;)+ Pgi = > ViViBjjsin(6;—0,)i=1,....n (7.195)
j=1
QLZ(VZ) + QGi = - Z VZV]BZ) COS(@Z' — Gj) 1= 1, e ,n(7.196)
j=1

where Pg; and Qg for i = 1,...,m are given by (7.191) and (7.192), and
Pgi = Qgi = 0 for i = m+1,...,n. The right-hand sides of (7.195) and
(7.196) are the sums of real and reactive power on the lines emanating from
bus 7 under the assumption of negligible transmission line resistance. This
is shown as follows. If we neglect transmission line resistances, then the
network admittance matrix is Y y = [1Bi;], and the total complex power in
the network transmission lines from bus ¢ is given by

v (Z jBijVj) : (7.197)
j=1

Expanding the expression (7.197) results in

n
Vieﬁi Z _jBijVje—J@j
j=1

—jV,-VjBij(cos(Gi — 0]) +jSlIl(9Z — 0]))

Il
NE

.
Il
—

VZVij sin(ﬁi — 9]) — ] Z VZVjBZ] COS(HZ' — 9]) (7.198)
j=1

Il
NE

<.
Il
—

The real and imaginary parts of (7.198) are the right-hand sides of (7.195)
and (7.196), respectively. The model given by (7.193)(7.196) is called the
structure-preserving classical model.

An interesting observation from (7.189) and (7.192) regarding reactive
power is the following. The reactive power absorbed by X/, is obtained by
substracting Q¢g; from E;l4;, resulting in

Eily — Qo = (FE? —2E;Vicos(6; — 6;) +V2)/ X, (7.199)

An alternative form of the structure-preserving model is to consider the
augmented Y matrix obtained by including the admittance corresponding
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to the transient reactances of the machines. Thus, with proper ordering,

n+l...n+m 1...m m+1...n
n+1 | |
' 7 I | 0
n+m | |
1 |
Yaug = : 7 | (7.200)
m |
m+1 | Y i
: 0 |
n |
where
y=D ! 1
y=Diag | - =1....m
I X5
and
— — g 0
Yni=YnN+ g 0].

Considering Yaug = [jBi;], (7.193)-(7.196) can be written more compactly
as (denoting, temporarily, d;’s as 6;’s and E;’s as V’s)

0, = iw,—ws i=n+1,....,n4+m (7.201)
2H; e
‘o = T — ViV, B;jsin(0; — 0;
oY M ; VjBij sin( i)
i=n+1,...,n+m (7.202)
n-+m
Pri(V;) = Y ViV;Bysin(6; —0;)i=1,...,n (7.203)
j=1
n+m
QLi(V;) = =Y VV;Bijjcos(6; —0;)i=1,....n. (7.204)
j=1

It can be verified that, in (7.202), the second term on the right-hand side
is only E;V;sin(6; — 6;)/X);. It is easy to verify the equivalence of (7.203)
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and (7.204) with (7.195) and (7.196), respectively. Note that, in this model,
we are allowed to have nonlinear load representation. This model is used in
voltage stability studies by means of the energy function method [117].

7.9.3 Internal-node model

This is a widely used model in first-swing transient stability analysis. In this
model, the loads are assumed to be constant impedances and converted to
admittances as
_ —(PLi—jQr)
Yri = - vz

%

i=1,...,n. (7.205)

There is a negative sign for g ;, since loads are assumed as injected quan-
tities. Adding these to the diagonal elements of the Y 1 matrix in (7.200)
makes it Y yo = Y n1 + Diag(yr;). The modified augmented Y matrix be-
comes

n+l...n+m 1...m m+1...n
n+1 | |
' Y A 0
n+m | |
1 |
Yaug = 7 | .(7.206)
m |
m—+1 | ?NQ
. 0 |
n |

The passive portion of the network is shown in Figure 7.16. The network
equations for the new augmented network can be rewritten as

m n
m | In| m(Ya Yp E4
n [ 0 ]— n (70 ?D> [731 (7.207)
where Y4 = 3,Yp = [-7 | 0],Y¢c = _Ty]’ and Yp = Y. The n

network buses can be eliminated, since there is no current injection at these
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JjX

dl
o Y|
°
= m+2 e—
VL1 °
= Network ° =
o - - —
1= YN \%
JX dm ¢ =
n+m ._fWYY\—7 m
n @—
YLm ;Ln
Figure 7.16: Augmented Y matrix with constant impedance
buses. Thus
— — J— __1_ J—
Ia = (Ya-Y5YpYe)Ea
— Y, Fa (7.208)

where the elements of I 4 and E 4 are, respectively, I; = (I4;+j Iqi)ej (6i=7/2) —
Ipi+jlg; and E; = E;/6;. The elements of ?int are Yij = G;; +jB;;. Since
the network buses have been eliminated, we may renumber the internal nodes
as 1,...,m for ease of notation

Pei = Re[FJ:]
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m

209

= Re Z(G” — jBU)EZE] [COS((SZ' — (5]) —l-]SlIl((SZ — (5])] (7210)

j=1
Define
5i—6; 2 6
Then
m
Pei = Z EZ'E]'(GU COS 62’]’ + Bij sin (5”)
j=1
m
= EEG“ + Z(CU sin 62’]’ + Dij COs 51])
J;zl
where
Cij = EZEJBU
Dij = EZEJGW
Thus, the classical model is
doi
dt - K] S
2H; dw;
1 i = TMi_Pei izl,...,m
ws dt

(7.211)

(7.212)

(7.213)
(7.214)

(7.215)

(7.216)

where P,; is given by (7.212). Since P,; is a function of the §;’s, (7.215)—

(7.216) can be integrated by any numerical algorithm.

7.10 Initial Conditions

Step 1 From the load flow, compute I; = Ip;+jlg; as (Pai—jQaqi)/Vie 1%,

Step 2 Using (7.185), compute E;,§; as E;/5; = V;el + j X (Ipi + 31gi).

Step 3 From (7.193) or (7.215), w; = ws.

Thus, computation of initial conditions is simple when a classical model

is used.
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Example 7.6

Compute F;/d;(i = 1,2,3) and ?int
model (all in pu).
We first compute I;(i = 1,2, 3)

for Example 7.1 using the classical

_ 0.716 — j0.27
= P A 07358/ — 20.66°
T VI 0.7358 0.66
_ 1.63 — j0.067
2 1.025/ — 9.3° 5916£6.947
_ 0.85 + 50.109
= I 0.8361/12.0°
I3 102/ 470 0830 0
Ei/6; = 1.04/0° + j0.068T; = 1.054/2.267°

Ey/0y = 1.025/9.3° + j0.119815 = 1.050/19.75°
Fs3/03 = 1.02/4.7° + j0.1813I3 = 1.017/13.2°

10,11,12 1,2,3 4...9
10 | |
11 ] \ -7 | 0
12 | |
1 |
YA = 2 —7 |
\
-—— Yo
4 \
: 0 |
9 \
where
—3516.45 0 0
7= 0 —458.35 0
0 0 —455.52
and Yo =Y N + g + Diag(7;,;)
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Y + is obtained by eliminating nodes 1...9 as in (7.208), and is given

int
by

0.845 — 72.988 0.287 + 51.513 0.210 + 51.226
0.287 + 51.513 0.420 — 52.724 0.213 + 51.088
0.210 +71.226 0.213 + 71.088 0.277 — 52.368

Y

int =

7.11 Conclusion

This chapter has discussed the formulation of a multimachine system model
with the two-axis model, as well as the reduced-order flux-decay model and
the classical model. The computation of initial conditions and solution
methodology for the two-axis model using the simultaneous-implicit method
has been discussed. The methodology of the ETMSP program of EPRI has
also been discussed. The reduced-order flux-decay model and the classical
model, as well as the computation of initial conditions, are discussed. We
also discussed the structure-preserving classical model.

7.12 Problems

7.1 Perform a load flow for the 3-machine system of Example 7.1 by varying
the load at bus 5 in increments of 0.5 until P;, = 4.5 pu. Plot the
voltage magnitude at bus 5 as a function of the load. This is called a
PV curve.

7.2 In Problem 7.1, the increased load at each increment is allocated to slack
bus 1. In practice, the AGC system allocates it through the area con-
trol error, etc. As an alternative, consider allocating the increased load
in proportion to the inertias of the machine, i.e., APpj5 is allocated to
buses 2 and 3 as Pg;l = Pég + g—;APm and Pg;l = ng + g—;APLE,,
where PCIZQ and ng are the generator powers before the load is in-
creased and Hy = Hy + Hs + Hs. Again draw the PV curve.

7.3 Repeat Problems 7.1 and 7.2 for a contingency of lines 5 to 7 being
outaged. Draw the PV curves for the pre-contingency state and the
contingent case on the same graph.
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7.4 This problem and Problem 7.5 can be done using symbolic software. As
explained at the end of Example 7.1, I4;, 14 can be eliminated from
(7.47) as well as (7.54) and (7.55) using (7.53). Express the resulting
equations in the form

= fi(z,V,u)
0 = gi(a,V).
This is the DAE model with the algebraic equations in the power-
balance form ((7.39) and (7.40)).

7.5 Using (7.53), substitute for Iy, I5;(i = 1,2,3) in (7.57) to express the
DAE in the form

= f(z,V,u)
Il(iL',V) = ?NV

7.6 Derive I;(z,V) = Y NV directly in Problem 7.5 from 0 = g;(z,V)
computed in Problem 7.4. (Hint: See Section 7.3.2.)

7.7 Express Example 7.1 in the form
&t = A(xz)+ BW + Cu

W = G(F,

0 = gi(x,

i = A(z)+ BW + Cu
W = G(E,V)
Tl(x,V) = ?NV

7.8 In Example 7.1, loads (both real and reactive) at buses 5 and 6 are
increased by 50 percent. With the new load flow compute the initial

conditions for the variables, Ia;, Iyi, Vi, Vi, Vieg; and Tay(i = 1,2, 3).

7.9 Under nominal loading conditions of Example 7.1, there is a three-phase
ground fault at bus 5 that is self-clearing in six cycles. Do the dynamic
simulation using the SI method or any available commercial software
for 0-2 sec. Use the two-axis model and the IEEE-Type 1 exciter data
in Example 7.1. You may use the model obtained in Problems 7.4, 7.5,
or 7.7.
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7.10 Repeat Problem 7.8 for the flux-decay model and a fast exciter with
K4 =25and T4 = 0.2 sec. Do the simulation as in Problem 7.9.

7.11 In Problems 7.9 and 7.10, find the gain K 4 at which the system will be-
come unstable. (Instability occurs when relative rotor angles diverge.)

7.12 In Problems 7.9 and 7.10, find by repetitive simulation the value ¢,
the critical-clearing time at which the system becomes unstable.

7.13 Repeat Problems 7.9 and 7.10 for the fault at bus 5 followed by clearing
of lines 5 to 7. Assume t.s = six cycles. Also find the critical-clearing
time t.;.

7.14 For Example 7.1, write the structure-preserving model in the form of
(7.201)—(7.204).

7.15 Obtain ?int for the system in Example 7.1 for both the faulted state
and post-fault states for (a) self-clearing fault at bus 5 and (b) fault
at bus 5 followed by switching of the lines 5 to 7. Write the equations

in the form (7.215)-(7.216).

7.16 Find t.. in Problem 7.15 for both cases by repetitive simulation, and
compare the results with Problems 7.12 and 7.13, respectively.
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Chapter 8

SMALL-SIGNAL
STABILITY

8.1 Background

In this chapter, we consider linearized analysis of multimachine power sys-
tems that is necessary for the study of both steady-state and voltage stability.
In many cases, instability and eventual loss of synchronism are initiated by
some spurious disturbance in the system resulting in oscillatory behavior
that, if not damped, may eventually build up. This is very much a function
of the operating condition of the power system. Oscillations, even if un-
damped at low frequencies, are undesirable because they limit power trans-
fers on transmission lines and, in some cases, induce stress in the mechanical
shaft. The source of inter-area oscillations is difficult to diagnose. Extensive
research has been done in both of these areas. In recent years, there has
been considerable interest in dynamic voltage collapse. As regional transfers
vary over a wide range due to restructuring and open transmission access,
certain parts of the system may face increased loading conditions. Earlier,
this phenomenon was analyzed purely on the basis of static considerations,
i.e., load-flow equations. In this chapter, we develop a comprehensive dy-
namic model to study both low-frequency oscillations and voltage stability
using a two-axis model with IEEE-Type I exciter, as well as the flux-decay
model with a high-gain fast exciter. Both the electromechanical oscillations
and their damping, as well as dynamic voltage stability, are discussed. The
electromechanical oscillation is of two types:

1. Local mode, typically in the 1 to 3-Hz range between a remotely located

215
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power station and the rest of the system.

2. Inter-area oscillations in the range of less than 1 Hz.

Two kinds of analysis are possible: (1) A multimachine linearized analysis
that computes the eigenvalues and also finds those machines that contribute
to a particular eigenvalue (both local and inter-area oscillations can be stud-
ied in such a framework); (2) a single-machine infinite-bus system case that
investigates only local oscillations.

Dynamic voltage stability is analyzed by monitoring the eigenvalues of
the linearized system as a power system is progressively loaded. Instability
occurs when a pair of complex eigenvalues cross to the right-half plane. This
is referred to as dynamic voltage instability. Mathematically, it is called
Hopf bifurcation.

Also discussed in this chapter is the role of a power system stabilizer that
stabilizes a machine with respect to the local mode of oscillation. A brief
review of the approaches to the design of the stabilizers is given. For detailed
design procedures, it is necessary to refer to the literature. References [77]
and [78] are the basic works in this area.

8.2 Basic Linearization Technique

A unified framework is presented in this section for the linear analysis of
multimachine systems. The nonlinear model derived in Chapter 7, with a
two-axis model with IEEE-Type I exciter or flux-decay model with a static
exciter, is of the form

[z, y,u) (8.1)

0 = g(zy) (8.2)

where the vector y includes both the I;_, and V vectors. Thus, (8.1) is of
dimension 7m, and (8.2) is of dimension 2(n + m).

Equation (8.2) consists of the stator algebraic equations and the network

equations in the power-balance form. To show explicitly the traditional
load-flow equations and the other algebraic equations, we partition y as

y = [Lhy Vi Vil Oa.  0n Vipyr .. V'
= [y |yl (83)

Here, the vector ¥, corresponds to the load-flow variables, and the vector y,
corresponds to the other algebraic variables. Bus 1 is taken as the slack bus
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and buses 2,...,m are the PV buses with the buses m 4 1,...,n being the
P@ buses. The dimension of z is 7m. Linearizing (8.1) and (8.2) around an
operating point gives

4 Az A B Az
0 = C D11 | Dy2 Aya + E[Au] (8.4)
0 Doy | JoF Ay,
Define
D11 Dia
Jag = . 8.5
AE [ Dy Jrr ] (8:5)

Eliminating Ay,, Ayp we get Az = AgysAz where Agys = (A— BJL%C).
Jrr is the load-flow Jacobian. The model represented by (8.4) is useful
in both small-signal stability, analysis and voltage stability, since Jpr is
explicitly shown as part of the system differential-algebraic Jacobian.

We use the above formulation for a multimachine system with a two-
axis machine model and the IEEE-Type I exciter (model A) and indicate
a similiar extension for the flux-decay model with a fast exciter (model B).
The methodology is based on [79] and [80].

8.2.1 Linearization of Model A

The differential equations of the machine and the exciter are the same as
in Chapter 7, except that the state variables are reordered. The synchro-
nous machine dynamic circuit and the IEEE-Type I exciter are shown in
Figures 8.1 and 8.2, respectively. The differential and algebraic equations

J Xdi Rg; (1 +j[qi) O = Iy + il
M
VWA -
+
[Eg+(X =X i) 1 \ (Vai +) V1) /@i
+j E(;i] @2 =V; O =Vp; +j Vi

Figure 8.1: Synchronous machine two-axis model dynamic circuit (i =
1,...,m)

follow.
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Vref
Efd
SKF
1+ STF
Figure 8.2: IEEE-Type I exciter model
Differential Equations
do;
d_tl = w; — ws (8.6)
dwi T By — Xglaillei (B + Xgilgillai
a M M; M;
D;(w; — ws)
_ 8.7
i (5.7
dEq By (Xai — Xj)lai o Eyai (8.8)
dt Tc/loi Tc/loi Téoi
dEéli Eéli Iqi /
— = ——+ (X X,;) (8.9)
dt T, T " 7
dEde' KEi + SE(Efdi) VRi
= — E¢p 1
dt Tr FéT (8.10)
dVg; Vri  Ka; KpiKp; K 4
— = - i — ———Feg + — (V... — V;) (8.11
dt T'a; * Ta 7' TaTp 1 * T (Veeg; = Vi) (8:11)
dRp; Rp; Kp;
—_— = - FE 8.12
dt Ty | (Tpp)? 1 (8.12)
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Stator Algebraic Equations

The stator algebraic equations in polar form are

Edz — V; sin ((SZ — 02) — RsiIdi + X(;ZIqZ =
Eq; — Vicos (0; — 0;) — Rilgi — Xgilas =
fori=1,...,m.

Network Equations

The network equations are
14 Visin(6; — 0;) + I5;Vicos(6; — 0;) + Pri(V;)
- i ViViYir cos(6; — 0 — ayi) = 0
I4;Vicos(0; — Zi:)l— 1, Visin(6; — 0;) + Qri(Vi)
— i ViVieYir sin(6; — 0, — o) = 0

k=1
i=1,2,...,m

Pr;(Vy) ZVVk}/,kcos(H —O0p—ay) = 0
k=1

QLZ z Z VVkYk SIH(Q — Hk — azk) = 0

fori=m+1,....,n

219

(8.15)

(8.16)

(8.17)

(8.18)

Equations (8.6)—(8.18) are linearized analytically, as explained below. The

linearization of the differential equations (8.6)—(8.12) yields

dAS;
= Aw;
dt s
dAw; 1 E!. X' Ty X' I
L= AT - AL DEEION  DATON T,
dt 7k VAl UL V7 @t L
Ez/i Idio X [dw X/ [qw
_ZdioAT, — “HOANR,. Al,; —
J 7 V7 M g M
dAEy, _ AEy, (Xdi—XC,li)AIdi+AEfdi

dt Téoi Téoi Téoi

A—[dl

(8.19)

Iqio
M; AE{N’

D;
M, A
(8.20)
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dAE), CAEy, | (X - XG)
- 7 Al 8.21
dt T}y + T, 1 (8:21)
dAFE 4 AVg;
I = fyi(Braio) AEsg; + =2 (8.22)
dt TE;
dAVR; AVgi  Ka; KA Kp; Ky
@I ARp; — AR Fi Npp o ANy,
at Tai | Ta T Ty ST T,
KAZ
T AV, (8.23)
dARF; ARFZ Kpi
— AE 1y, 8.24
dt Tre | (Tp)2 (8:24)
fori=1,...,m

Where fSZ(EdeO) — KE2+EfdzoaSE (Efdzo)"rSE (Efd'm) Where the Symbol 8 Stands

for partial derivative. Writing (8. 19) through (8.24) in matrix notation, we
obtain

AS; 0 1 0 0 0 0 0 A T
! D; Iqgio Liio %
Aw; 0 -3 - i — Ty (1) 0 0 Aw;
AE‘;Z 0 0 o T, 0 T, 0 0 AE:ﬂ
AE/, - 0 0 0 - 0 0 0 AE!,
AE}y; 0 0 0 0 fu(Braio) 7= 0 AEfq;
AVg; 0 0 0 0 —Kakm _ L Ku AVg;
L Al S B S A
_ 0 0 i
Iqio(Xc,u*X;i)*Eéio Idio(Xéi*X;i)*E:;io
M; M;
_ (Xai—X},) 0
T ’ AIdZ
+ 0 Te u [ Al ]
qoi
0 0
0 0
L 0 0 i
o 0 T 0 0 ]
0 0 i 0
0 0 0 0
+lo o [ NG ]+ 0 0 { Ao }
0 0 v 0 0 refi
K i K 3
0 _T:i 0 T:i
0o 0 | o 0 |

i=1,...,m. (8.25)
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Denoting l Al ] = Algy;, [ AV, ] = AVy;, and l AV, ] = Au;, (8.25)
can be written as

Az, = A Az + BliAIgi + BQZA‘/;]Z + E;Au; fori=1,...,m. (826)
For the m-machine system, (8.26) can be expressed in matrix form as

Ai = AyAz+ BiAIL + ByAV, + E{AU (8.27)

where A1, B, B, and Ep are block diagonal matrices.
We now linearize the stator algebraic equations (8.13) and (8.14):

AE) — sin(bio — 0io) AV; — Vg cos(8io — bi0) Ad; + Vip cos(8io — bi0) AG;

AE(;Z — COS(5Z'O — QZO)AV; + ‘/io sin(éio — GZO)A(SZ — ‘/io sin(éio — HZO)AHZ
_RsiAIqi - XéZAIdz =0 1= 1, NN (829)

Writing (8.28) and (8.29) in matrix form, we have

Ad;
Aw;
/

l—Viocos(éio—eio) 00100 0] ig/n
e 0 di
‘/208111(620 010) 010000 AEfdi
AVg;
ARp; |

—Rsi X!, Algy
+ T
—X', —Ry || Al
Vio c08(0io — 0ip)  —sin(dip — 050) A 0
—Vio Sin(éio - Gio) - COS((SiO - Gio) AV; N
i=1,...,m. (8.30)
Rewriting (8.30), we obtain
0 = CuylAx;+ DliAIgi + DgiAVgi t=1,...,m. (831)
In matrix notation, (8.31) can be written as

0 = CiAx+ DlAIg + DQA% (832)



222 CHAPTER 8. SMALL-SIGNAL STABILITY

where C, D1, and D are block diagonal. Linearizing the network equations
(8.15) and (8.16), which pertain to generators, we obtain

Vio Sin(éio - eio)AIdi + Idio Sin(éio - HZO)A‘/Z + Idio‘/io COS((SiO - HZO)A(SZ
—14ioVio €08(8io — i0) Ab; + Vip cos(io — Bio) Al
+Iqi0 COS(éiO - HZO)A‘/Z - Iqio‘/io Sin(éio - 0@0)A52

+Iqio‘/io Sin(éio - Gzo)Aez - Z Vko}/;k COS(QZ'O - eko - aik) A‘/z
k=1

—Vio [}/;k COS(HiO - Gko - azk)] AVk

WE

k=1

+ [Vio Y VioYiksin(fio — Oro — i) | AB;

k=1
#i
n P i
Z VieoYik sin(0io — Opo — vir)] Aby + 0 g‘ﬁ )AV =0 (8.33)

‘/io Cos(éio - Gio)AIdi + Idio Cos(éio - ezo)A‘/z - Idio‘/io Sin(éio - ezo)Aéz
+Idio‘/io Sin((sio - ezo)Aez - ‘/;o Sin((sio - Hio)AIqi
_Iqio Sin((sio - ew)AV; - Iqio‘/io COS((SiO - ezo)Aéz

+Iqio‘/i0 COS((SiO - HZO)AHZ - Z VkoY;k Sin(eio - eko - aik) AVYZ
k=1

~Vio > [Yie sin(fio — Oro — ctir)] AV
k=1

‘/io Z Vko}/;'k COS(QZ'O - eko - aik) Aez

k=1
#i
= 2QLi(V;)
+V§ [VioYir co8(0i0 — Opo — vir)] Aby, + v, VYAV, =0
#i

i=1,2,...,m. (8.34)
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Rewriting (8.33) and (8.34) in matrix form, we obtain

[ O Amy D3y
0 = : Do+

L Com Az D3,

[ Aly Dya -+ Dam AVy
: + : : : :

L AIgm Dyma -+ Dimm Ang
Dsimy1r -+ Dsin AVt

+ : : : : (8.35)
Dsinms+1 -+ Dsmpn AVy,

where the various submatrices of (8.35) can be easily identified. In matrix
notation, (8.35) is

0 = CAz+ D3Al; + DyAVy + DsAV, (8.36)
where
Ab;
for the non-generator buses i =m +1,...,n.

Note that Cy, D3 are block diagonal, whereas Dy, D5 are full matri-
ces. Linearizing network equations (8.17) and (8.18) for the load buses (PQ
buses), we obtain

0P (Vi)

T@-Avi - [Z VioYir cos(8io — Oro — Oéik)‘| AV;

k=1

+ Z ‘/iovko}/;k Sin(eio - eko - aik) Aez
k=1

#i

—Vio Z [}/;k COS(HiO — Opo — azk)] AVk

_Vio Z [VkoYik sin(@io — eko — alk)] A@k (837)
k=1
#i



224 CHAPTER 8. SMALL-SIGNAL STABILITY

0Qri(V;) - .
= ———AV; — E oY io — Oko — i) | AV;
0 oV, V 2 Vieo Yik sin (6 Oro — i) | AV

- Z ‘/iovko}/;k COS(QZ'O - eko - aik) Aez
k;ll
—Vio Y Yiksin(0io — Ogo — cvir)] AV
k=1

+Vio > [VioYik c08(8io — Oro — tire)] Aby
k=1

#i
i=m+1,...,n (8.38)

Rewriting (8.37) and (8.38) in matrix form gives

[ Dém+1,1 -+ Demsim AVy
0 = : : : :
L Deni -+ Denm AVym
[ Drmgtme1r 0 Dimgin AVt
+ : : : : (8.39)
L Dmmsr -+ Dy AV,

where, again, the various submatrices in (8.39) can be identified from (8.37)
and (8.38). Rewriting (8.39) in a compact notation,

0 = DAV, + D;AV, (8.40)

where Dg, D7 are full matrices. Rewriting (8.27), (8.32), (8.36), and (8.40)
together,
At = AjAz+ B1Alj+ BoAV, + E1Au (
Ci1Az + DAl + DAV (8.42
(
(

CoAx + D3Aly + DyAV, + Ds AV,
= DeAV, + D;AV;

where
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x, = [0 w; E . Bl Etdi Vri Rfl]
I, = [Ia R P -

Vo = [6h V1 O Vin]!

Ve = [ m+1 Vm+1 .On Vn]t

u o= [ul g

u; = [T refz] .

This is the linearized DAE model for the multimachine system. Equa-
tions (8.41)—(8.44) are equivalent to the linear model of (8.4), except that in
these equations the dependence of loads on the voltages has not been spec-
ified, whereas in (8.4) the loads were assumed to be of the constant power
type. This model is quite general and can easily be expanded to include
frequency or V dependence at the load buses. The power system stabilizer
(PSS) dynamics can also be included easily. In the above model, A, is
not of interest and, hence, is eliminated from (8.41) and (8.43) using (8.42).
Thus, from (8.42),

Al, = —-D7'CiAz— Di'DyAV. (8.45)
Substituting (8.45) into (8.43), we get
CyAz + D3(—Dy'C1Az — Dy Do AV,) + DyAV, + DsAV, = 0

(8.46)
Let
[Ds—D3DI'Do| £ K
and
-1 A
[02 — DsD; 01} 2 K. (8.47)
Note that Dl_l involves taking a series of 2x2 inverses of Zg_,;(1 = 1,...,m).
Equation (8.46) is now expressed as
KoAx + KlAth + DsAV, = 0. (848)

If (8.45) is substituted in (8.41) to eliminate Al,, the new overall differential-
algebraic model is given by

Ai = (A; — BiD{'Cy)Az + (By — B1D; ' D2)AV, + Ey Au (8.49)

= KoyAx+ KlAth + D5 AV, (850)

= DGAV;] + D7 AV,. (851)
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Equations (8.49)—(8.51) can be put in the more compact form

A _ A B Ax By
where AVy = [ i“ig . Reorder the variables in the voltage vector and de-
J4

fine AV, = [Ayl Ayl]t = [A6 AVi ... AV, | Ay .. A0, AV, ... AV,
Ay is the set of load-flow variables, and Ay, is the set of other algebraic
variables in the network equations. Note that we have eliminated the stator
algebraic variables.

In any rotational system, the reference for angles is arbitrary. The order
of the dynamical system in (8.52) is 7m, and can be reduced to (7m — 1) by
introducing relative rotor angles. Selecting §; as the reference, we have

8 = 6 -4 i=2,...,m

5, = 0
5; = wW; — w1 i:2,...,m
8 =0

0, = 0,6 i=1,...,n.

Since the angles §;(: = 1,...,m) and 0;(i = 1,...,n) always appear as differ-
ences, we can retain the notation with the understanding that these angles
are referred to d;. This implies that the differential equation corresponding
to d1 can be deleted from (8.52) and also from the column corresponding
to Ad, in A’ and C’. The differential equations Ad; = w;(i = 2,...,m) are
replaced by Ad, = Aw; — Aw;. This means that in the A’ matrix we place
minus 1 in the intersections of the rows corresponding to Aél(z =2,...,m)
and the column corresponding to Aw;. This process is analytically neat,
but is not carried out in linear analysis packages. Since angles appear as
differences, they are computed to within a constant. Hence, a zero eigen-
value is always present. Recognizing this fact, we retain the formulation
corresponding to (8.52). We rewrite the differential-algebraic (DAE) system
(8.52) after the reordering of algebraic variables as

Ad A B, By, [ Az E
0 C) Dby Dby Ay, 0
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For voltage-dependent loads, only the appropriate diagonal elements of D/,
and Db, will be affected. Now, D5, is the load-flow Jacobian Jpr modified
by the load representation and

/ /
11 12 !
= J 8.54
[%1%J A (854

the network algebraic Jacobian with voltage dependencies of the load in-
cluded. Note that, compared to the algebraic Jacobian Jag of (8.4), the
stator algebraic variables have been eliminated to obtain J/y 5. The system
Agys matrix is obtained as

where

!
s = A= BB G | (85
This model is used later to examine the effects of increased loading on the
eigenvalues of Agys and the determinants of J, and Jpp for (1) constant
power case, (2) constant current case, and (3) constant impedance case for
the models A and B.
We now show that the model in (8.53) is consistent with the development

from the nonlinear model in power balance form from Chapter 7. These are
(7.36)-(7.38):

T = fo(l'ald—qvvau) (857)
Iioqg = h(z,V) (8.58)
0 = golz,Ia—q, V). (8.59)

By substituting /4, from (8.58) in (8.57) and (8.59), we obtain

= fi(z,V,u) (8.60)
0 = gi(z,V). (8.61)

Linearizing (8.60) and (8.61) results in

. _ 0h 22! 2!
Ax = o Az + 8VPAV},,—|— ey Au
0 = 9pn, 99Ny

Oz oV,
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where V, = [6h Vi... Vi | 02... 60, Vipg1 ... V,,]Y, then we can identify

Gr=a, 5= (BB

oz
C/ ! / El
991 _ 1 991 _ 11 12 ofi _ 0
- !/ ) - / / 9 -
ox C2 oVp D21 D22 ou 0

8.2.2 Linearization of Model B

As discussed in Chapter 7, the multimachine model with the flux—decay
model and fast exciter (Figures 8.3 and 8.4) is given by the following set of

J Xai (14 +) 1) O

+
Rsi

[(Xyi = Xi) Lgi+jEg;] O LT (Vi +7 V) SO = v, o

Figure 8.3: Dynamic circuit for the flux-decay model

Vref + KA Efd
—_— S >
1+ STA
%

Figure 8.4: Static exciter model

differential-algebraic equations:
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Differential Equations

% C w (8.62)
d;;i _ Z;\AZ B EE/J\Zqz’ B (Xqi]\—Jch/li)Idini _ Di(w;m ws) (8.63)
% _ _gii _ (XdiT;j(c,li)[di i ?Zj: (8.64)

fori=1,...,m.

Stator Algebraic Equations

The stator algebraic equations are

Vi sin(éi — 91) 4+ Rgilyg — Xqi[qi = 0 (866)
E(,]’i — Vicos(8; — 0;) — Rsilyi — Xl = 0 (8.67)
fori=1,...,m.

Network Equations

The network equations are the same as (8.15)—(8.18). The linearization of
this model is done in the same manner as in model A and, hence, is not
discussed.

8.3 Participation Factors

Due to the large size of the power system, it is often necessary to construct
reduced-order models for dynamic stability studies by retaining only a few
modes. The appropriate definition and determination as to which state vari-
ables significantly participate in the selected modes become very important.
This requires a tool for identifying the state variables that have significant
participation in a selected mode. It is natural to suggest that the significant
state variables for an eigenvalue \; are those that correspond to large en-
tries in the corresponding eigenvector v;. But the entries in the eigenvector
are dependent on the dimensions of the state variables which are, in gen-
eral, incommensurable (for example, angle, velocities, and flux). Verghese et
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al. [81] have suggested a related but dimensionless measure of state variable
participation called participation factors.

Participation factor analysis aids in the identification of how each dy-
namic variable affects a given mode or eigenvalue. Specifically, given a linear
system

z = Az (8.68)

a participation factor is a sensitivity measure of an eigenvalue to a diagonal
entry of the system A matrix. This is defined as

O\

i = 8.69
Dk Bars (8.69)

where \; is the ;th system eigenvalue, ayi is a diagonal entry in the system
A matrix, and py; is the participation factor relating the kth state variable
to the ith eigenvalue. The participation factor may also be defined by

Wi Vs

R 8.70
Pki wgvi ( )

where wy; and vy; are the kth entries in the left and right eigenvector associ-
ated with the ith eigenvalue. The right eigenvector v; and the left eigenvector

w; associated with the ith eigenvalue \; satisfy
wiA = wi\. (8.72)

It is not obvious that the definitions given in (8.69) and (8.70) are equivalent.
We establish the equivalence as follows. Consider the system

[A—)\Z-I]vi =0 (8.73)
wiA—NI] = 0 (8.74)

where v; and w; need not be normalized eigenvectors. It is our goal to
examine the sensitivity of the eigenvalue to a diagonal element of the A
matrix. From (8.68), assuming that the eigenvalues and eigenvectors vary
continuously with respect to the elements of the A matrix, we write the
perturbation equation as

(A+ AA)(v; + Avy) = (A + AN) (07 + Avy). (8.75)



8.3. PARTICIPATION FACTORS 231

Expansion yields

[Avi] + [AAv; + AAv] + [AAAY)] = [Nu] + [AN;
—i—)\iAvi] + [A)\ZAUZ] (876)

Neglecting the second-order terms AAAwv; and A\;Av; and using (8.71), we
obtain

Multiply (8.77) by the left eigenvector w! to give
wiA — NI Av; + wiAAv, = wiANv;. (8.78)

The first term in the left-hand side of (8.78) is identically zero in view of
(8.74), leaving

wiAAv; = wiANv;. (8.79)

Now, the sensitivities of A; with respect to diagonal entries of A are related
to the participation factors, as follows. Assume only that the j;th diagonal
entry of A is perturbed so that

o --- 0 0
AA= 0 Aakk 0 . (880)
o --- 0 0

Then, in (8.79), the left-hand side can be simplified, resulting in
WEAAv; = Wi Aagpvg = wEANY; (8.81)

Solving for the sensitivity gives the participation factor as

AN W Vki
_ - 8.82
Aagy whv; Pk ( )

Equation (8.82) thus shows that (8.69) and (8.70) are equivalent.

An eigenvector may be scaled by any value resulting in a new vector,
which is also an eigenvector. We can use this property to choose a scaling
that simplifies the use of participation factors, for instance, choosing the
eigenvectors such that wlv; = 1 simplifies the definition of the participation
factor. In any case, since > p_; wyivg; = wiv;, it follows from (8.82) that
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the sum of all the participation factors associated with a given eigenvalue is
equal to 1, i.e.,

n
ook = 1. (8.83)
k=1

This property is useful, since all participation factors lie on a scale from zero
to one. To handle participation factors corresponding to complex eigenval-
ues, we introduce some modifications as follows. The eigenvectors corre-
sponding to a complex eigenvalue will have complex elements. Hence, py; is
defined as

| i || W |
dk=1 | vk || wg |

A further normalization can be done by making the largest of the participa-
tion factors equal to unity.

Pki (8.84)

Example 8.1

Compute the participation factors of the 2 x 2 matrix ¢ = Ax, where

)

The eigenvalues are A\ = 5, Ao = —2. The right eigenvectors are

b

and

The left eigenvectors are computed as w! = [3 4] and wh = [1 — 1]. Verify
that wiv; = wivg = 0. Also, wivy = 7 = whvy. Letting i = 1 and k = 1,2,
successively, we obtain the participation of the state variables 1, x2 in the
mode A\ = 5 as

- w11011 o (3)(1) o 3

P = I = =5
wiv1 7 7

w21V21 N (4)(1) N 4

P21 I = =5
WV 7 7
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Letting ¢ = 2 and k = 1, 2, we obtain the participation of the state variables
T1,x2 in the mode Ay = —2 as

by = Wi2vz 4

12 whvy 7

by = L22v2 3

22 whvy 7

The participation matrix is therefore

3 4

P11 P12 77

P21 P22 77

Normalizing the largest participation factor as equal to 1 in each column
results in

0.75 1
Fnorm = l 1 0.75]‘
O

The ith column entries in the P or Pnorm matrix are the sensitivities of
the th eigenvalue with respect to the states.

Example 8.2

Compute the participation factors corresponding to the complex eigenvalue
of

-04 0 -0.01
A = 1 0 0
-14 98 -0.02

The eigenvalues are A\ = —0.6565 and Ay 3 = 0.1183 £ j0.3678. The right
and left eigenvectors corresponding to the complex eigenvalue Ay = 0.1183 +
70.3678 are

0.0138 — j0.0075 0.838 — 50.0577
Vg = —0.0075 — 50.04 , Wo = 0.4469 + 50.307
—0.9918 — 50.1203 —0.0061 + 50.0205
Using the formula in the previous section, we obtain
po1 = 0.2332, pog = 0.3896, pog = 0.3772.

Note pa1 + p22 + p2g = 1. We can normalize with respect to poo by making

it unity, in which case pa;morm) = 0.598, paamorm) = 1 and pazmorm) =
0.968. |
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Example 8.3

The numerical Example 7.1 is used to illustrate the eigenvalue computa-
tion. Compute the eigenvalues, as well as the participation factors, for
the eigenvalues for the nominal loading of Example 7.1. The damping
D; = 0(i = 1,2,3). The machine and exciter data are given in Table 7.3.
Loads are assumed as constant power type.

Solution

Following the linearization procedure results in a 21 x 21 sized Asys matrix.
Because of zero-damping, two zero eigenvalues are obtained. The eigenval-
ues are shown in Table 8.1. The participation factors associated with the

Table 8.1: Eigenvalues of the 3-Machine System

20.7209 +;12.7486
-0.1908  +78.3672
_5.4875  £57.9487
15.3236  £57.9220
-5.2218  +j7.8161
-5.1761
-3.3995
0.4445 +£51.2104
-0.4394  £50.7392
-0.4260  +50.4960
~0.0000
-0.0000
-3.2258

eigenvalues are given in Table 8.2. Only the participation factors greater
than 0.2 are listed. Also shown are the state variables and the machines
associated with these state variables. From a practical point of view, this
information is very useful. O
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Table 8.2: Eigenvalues and Their Participation Factors

Eigenvalue Machine Number | Machine Variable PF
-0.7209 + j12.7486 3 0, w 1.0, 1.0
2 o, w 0.22, 0.22
-0.1908 + ;8.3672 2 0, w 1.0, 1.0
1 o, w 0.42, 0.42
-5.4875 £ j7.79487 2 VR, Efq 1.0, 0.98
2 Ry 0.29
-5.3236 £ 57.9220 3 Vr,Efd 1.0, 0.98
3 Ry 0.29
-5.2218 + 57.8161 1 Vr,Efq 1.0, 0.97
1 Ry 0.31
-5.1761 2 E} 1.0
3 E} 0.92
-3.3995 3 E} 1.0
-3.2258 2 E} 0.89
-0.4445 + 51.2104 1 E,, Ry 1.0, 0.74
2 E,, Ry 0.67, 0.48
3 E,, Ry 0.38, 0.28
-0.4394 + 5j0.7392 1 E,, Ry 1.0, 0.78
2 E,, Ry 0.78, 0.60
3 E, 0.22
-0.4260 + j0.4960 3 E,, Ry 1.0, 0.83
2 E, Ry 0.43, 0.33
0.0000 1 0, w 1.0, 1.0
2 0, w 0.26, 0.26
0.0000 1 0, w 1.0, 1.0
2 0, w 0.26, 0.26

8.4 Studies on Parametric Effects

In this section, the effect of various parameters on the small-signal stability
of the system is studied.

8.4.1 Effect of loading

The WSCC 3-machine, 9-bus system of Chapter 7 is considered. The real
or reactive loads at a particular bus/buses are increased continuously. At
each step, the initial conditions of the state variables are computed, after
running the load flow, and linearization of the equations is done. Ideally, the
increase in load is picked up by the generators through the economic load
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dispatch scheme. To simplify matters, the load increase is allocated among
the generators (real power) in proportion to their inertias. In the case of
increase of reactive power, it is picked up by the PV buses. The Agys
matrix is formed, and its eigenvalues are checked for stability. Also det Jrp
and det J', , are computed. The step-by-step algorithm is as follows:

1. Increase the load at bus/buses for a particular generating unit model.

2. If the real load is increased, then distribute the load among the various
generators in proportion to their inertias.

3. Run the load flow.
4. Stop, if the load flow fails to converge.

5. Compute the initial conditions of the state variables, as discussed in
Chapter 7.

6. From the linearized DAE model, compute the various matrices.
7. Compute det Jpr,det J) ;;, and the eigenvalues of Agys.
8. If Agys is stable, then go to step (1).

9. If unstable, identify the states associated with the unstable eigen-
value(s) of Agys using the participation factor method, and go to

step (1).

The above algorithm is implemented for models A and B. Nonuniform
damping is assumed by choosing D; = 0.0254, Dy = 0.0066, and D3 =
0.0026. The results are summarized in Tables 8.3 and 8.4. It is observed that
for constant power load, with model A and the IEEE-Type I slow exciter, it
is the voltage control mode that goes unstable at Prs = 4.5 pu. Examination
of the participation factor indicates that the pair of state variables E;,Rf
of machine 1 in the excitation system is responsible for this model. In the
case of model B, the mode that goes unstable is due to the electromechanical
variables ¢, w of machine 2 at a load of 4.6 pu. A value of K 4 = 45 is assumed.
The point at which the eigenvalues cross over to the right-half plane is called
the Hopf bifurcation point, and the point at which the det J/; changes sign
is the singularity-induced bifurcation. These are discussed in the literature
in detail [82, 85].
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Table 8.3: Eigenvalues with Model A, K4 = 20

Load at Bus 5 | sgn(detJpr) | sgn(detJ’ o) | Critical Eigenvalue(s) | Associated States

4.3 + + -0.1618 £ j1.9769 E(’]l,Rfl
4.4 + + -0.0522 + 52.1102 E!,, Rp

4.5 (A) + + 0.1268 + 52.2798 E(’]l,Rfl
4.6 + + 0.4446 + j2.4911 E El,
47 + + 1.0825 + j2.7064 Bl Bl
48 + + 2.6051 + j2.4392 | By, Bl By Bl
4.9 + + 17.568, 1.7849 Ely

5.0 (B) + - 1.0526 E!,
5.1 + - 0.6553 E!,
5.2 + - 0.3505 E!,
5.3 + - 0.0496 El,, 61,62
5.35 - - -0.1454 w1
5.45 LF does not converge

8.4.2 Effect of K4

It was found that, for model A, the increase in K4 alone did not lead to
any instability. The stabilizing feedback in the IEEE-Type I exciter was
removed, and then an increase in K 4 led to instability for this model, as
well. For model B, a sufficient increase in K 4 led to instability even for a
nominal load.

8.4.3 Effect of type of load

Appropriate voltage-dependent load modeling can be incorporated into the
dynamic model by specifying the load functions. The load at any bus ¢ is

given by
Vi \"7i
Pr; Prio (—) i=1,...,n (8.85)
Vi
Vi \"e
Qi = QLio (V_> i=1,...,n (8.86)

where Pr;, and (1, are the nominal real and reactive powers, respectively,
at bus ¢, with the corresponding voltage magnitude V;,, and n,;, ng; are the
load indices. Three types of load are considered.

1. Constant power type (n, = ng =0).

2. Constant current type (n, =ng = 1).
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Table 8.4: Eigenvalues with Model B, K4 = 45

Load at Bus 5 | sgn(detJrr) | sgn(detJ’ o) | Critical Eigenvalue(s) | Associated States
4.3 + + -0.1119 £ 58.8738 d2, w2
4.4 + + -0.0729 + ;8.8401 8o, w2
4.5 + + -0.0035 £ ;8.8183 d2,w2

4.6 (A) + + 0.0901 + ;8.8421 8o, w2
47 + + 0.1587 + ;8.9371 52, wo
4.8 + + 0.1292 £ 59.0538 d2,w2
4.9 + + 0.7565 + j20.1162 El, By

0.0471 £ 79.0902 02, w2

5.0 (B) + - 14.7308 E!\ E),
5.1 + - 7.1144 E!,
5.2 + - 4.2567 El,
5.3 + - 2.3120 E!,
5.4 - - -0.0597 £ 58.7819 d2, w2
5.5 LF does not converge

3. Constant impedance type (n, = n, = 2).

The step-by-step procedure of analysis for a given generating-unit model is
as follows:

1. Select the type of the load at various buses (i.e., choose values of n,
and n4 at each bus).

2. Compute the system matrix.
3. Compute the eigenvalues of Agys for stability analysis.

For the three types of loads mentioned earlier, the eigenvalues of model A

for increased values of load Py, at bus 5 are listed in Tables 8.5, 8.6 to 8.7.
First of all, the relative stability of constant power, constant current, and
constant impedance-type load has been shown for a nominal operating point
Pro, = 1.5 puand Qr, = 0.5 pu (Table 8.5). We observe that the system is
dynamically stable for all types of loads. For an increased value of load at
bus 5 (Pr, = 4.5 pu, Qr, = 0.5 pu), the eigenvalues are listed in Table 8.6.
From Table 8.6 we observe that, for this increased load at bus 5, the system
becomes dynamically unstable if the load is treated as a constant power
type, whereas for the other two types of loads the system remains stable.
Finally, we take another case (P, = 4.6 pu, Qr, = 0.5 pu), in which we
show that the constant impedance type load is more stable than the constant
current type. To demonstrate this condition, we take model B with a high
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Table 8.5: Eigenvalues for Different Types of Load at Bus 5 for model A
(Pro = 1.5 pu; Qro = 0.5 pu): (a) constant power; (b) constant current;
(c) constant impedance

Constant Power

(a)

Constant Current

(b)

Constant Impedance

()

20.7927 + j12.7660
-0.2849 + j8.3675
_5.5187 + j7.9508
-5.3325 + §7.9240
_5.2238 + ;7.8156
-5.2019

-3.4040

-0.4427 + 51.2241
-0.4404 + 50.7413
~0.0000

-0.1975

104276 + j0.4980
-3.2258

-0.7904 £ 512.7686
-0.2768 + 58.3447
-5.5214 £ 57.9516
-5.3335 + j7.9247
-5.2273 £ 57.8259
-5.2030
-3.4462
-0.4537 £ 71.1822
-0.4412 £ 50.7416
-0.0000
-0.1974
-0.4276 £ 50.4980
-3.2258

“0.7887 £ j12.7706
-0.2703 + j8.3271
-5.5236 + 57.9523
_5.3344 + j7.9253
-5.2301 + ;7.8337
-5.2039

-3.4801

-0.4617 + 51.1489
-0.4419 + 50.7418
~0.0000

-0.1973

-0.4277 + 50.4980
-3.2258

gain of the exciter (K4 = 175). The eigenvalues for various kind of loads
are listed in Table 8.7. Both the constant power and constant current cases
are unstable, whereas the constant impedance type is stable. These results
corroborate the observation in the literature that constant power gives poor
results as far as network loadability is concerned [84].

8.4.4 Hopf bifurcation

For model A, when the load is increased at bus 5, it is observed that the
critical modes for the unstable eigenvalues are the electrical ones associated
with the exciter, and are complex (Table 8.3). At a load of 4.5 pu, the
eigenvalues cross the jw axis. This is known as Hopf bifurcation (point A).
When the load is increased from 4.8 pu to 4.9 pu, the complex pair of unstable
eigenvalues splits into real ones that move in opposite directions along the
real axis. The one moving along the positive real axis eventually comes
back to the left-half plane via +o0o when the load at bus 5 is increased from
4.9 pu to 5.0 pu (point B). This is the point at which det J/;; changes sign.
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Table 8.6: Eigenvalues for Different Types of Load at Bus 5 for Model A
(Pro = 4.5 pu; Qro = 0.5 pu): (a) constant power; (b) constant current;
(c) constant impedance

Constant Power

(a)

Constant Current

(b)

Constant Impedance

(©)

C0.7751 + j12.7373
~0.2845 + 58.0723
-6.7291 + j7.8883
_5.6034 £ 57.9238
_5.2035 + 57.6433
-5.2541

0.1268 + j2.2798
-2.5529

-0.4858 & 50.7475
~0.0000

~0.5341 £ 50.5306
-0.1976

-3.2258

-0.7335 £ 512.7842
-0.2497 £+ 358.0650
-6.7669 £ 57.9730
-5.6287 £ j7.9557
-5.2812 £ 57.8419
-5.2715

-3.5296

-0.5020 £+ 51.2531
-0.0000

-0.4910 £ 50.7561
-0.5360 + j0.7561
-0.1972

-3.2258

-0.7285 £ 712.7936
-0.2444 £+ 358.0659
-6.7760 £ 77.9895
-5.6338 £+ 57.9639
-5.2938 £ 57.8712
-5.2790

-3.8105

-0.5303 £+ 51.0434
-0.4950 £ 50.7653
-0.5371 £+ 50.5336
-0.0000

-0.1970

-3.2258

This is also known as singularity-induced bifurcation in the literature [85].
The other unstable real eigenvalue moves to the left, and is sensitive to the
variable Ej; of the exciter. This eigenvalue returns to the left-half plane
at a loading of approximately 5.4 pu, and the system is again dynamically
stable (point C). For the load at bus 5 = 5.5 pu, the load flow does not
converge. It is possible through other algebraic techniques to reach the
nose of the PV curve or the saddle node bifurcation. This phenomenon
is pictorially indicated in the PV curve for model A and also is the locus
of critical eigenvalue(s) in the s-plane (Figures 8.5 and 8.6). At point A,
Hopf bifurcation occurs, and it has been shown to be subcritical, i.e., the
limit cycle corresponding to the Ej — Ry pair is unstable [86]. However,
load-flow solution still exists. In this region, E; and Ry state variables are
clearly dominant initially. As the eigenvalues become real and positive, other
state variables start participating substantially in the unstable eigenvalues,
as indicated in Table 8.3. For model B, which has the fast static exciter with
a single time constant, the modes that go unstable are the electromechanical
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Table 8.7: Eigenvalues for Different Types of Load at Bus 5 for Model B with
Ky = 175(Pro, = 4.6 pu, Qr, = 0.5 pu): (a) constant power; (b) constant
current; (¢) constant impedance

Constant Power Constant Current | Constant Impedance
(a) (b) (©)

-1.9610 + 519.3137 | -0.2039 £ j15.5128 | -0.2054 + 515.5285
-0.1237 £+ 515.5812 | -2.2586 + 512.4273 | -2.1834 + 511.1128
0.4495 + 59.1844 0.1441 4+ 59.0636 -0.0607 + 79.1218
-3.1711 + 58.2119 | -3.1359 + 48.1099 | -3.0930 £ ;8.0364
-2.7621 £+ j7.1753 | -2.7599 + j7.1594 | -2.7575 + ;7.1462
-0.0000 -0.0000 -0.0000

-0.1987 -0.1989 -0.1990

ones (Table 8.4).

When the Hopf bifurcation phenomenon in power systems was first dis-
cussed in the literature for a single-machine case, the electromechanical mode
was considered as the critical one [78, 87]. It was called low-frequency oscil-
latory instability. In studies relating to voltage collapse, it was shown that
the exciter mode may go unstable first [82]. From Tables 8.3 and 8.4, it
is seen that both the exciter modes and the electromechanical modes are
critical in steady-state stability and voltage collapse, and that they both
participate in the dynamic instability depending on the machine and exciter
models. Hence, decoupling the QV dynamics from the Pé dynamics as sug-
gested in the literature may not always hold. It may be true for special
system configuration/operating conditions. Load dynamics, if included, can
be considered as fast dynamics, and the phenomenon of det J/,; changing
sign will still exist. In conventional bifurcation-theory terms, one can think
of solving g(x,y) = 0 for y = h(z) in (8.2) and substituting this in the dif-
ferential equation (8.1) to get & = f(z, h(z)). The change in sign of det J/y
(which generally agrees with the sign of J4g in (8.5)) is the instant at which
the solution of y is no longer possible. This is also tied in with the concept
of the implicit function theorem in singular perturbation theory.
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1.2 [ [ [ [ [

Vs

Real Power at Bus 5

Figure 8.5: PV curve for bus 5 with model A

8.5 Electromechanical Oscillatory Modes

These are the modes associated with the rotor angles of the machines. These
can be identified through a participation factor analysis in the detailed
model. In the classical model with internal node description, we have only
the rotor angle modes. We now discuss the computation of these modes
as a special case. The equations have been derived in Chapter 7 and are
reproduced below.

do; ,
% = Wi — Ws Zzl,...,m (887)
ws dt Tai — | Ef G+ Y _(Cijsindij + Dij cos 65)

j=1
#i
= TMi_Pei z:l,,m (888)
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Real Part

Figure 8.6: The qualitative behavior of the critical modes of Agys as a
function of the load at bus 5 (model A)

Linearization around an operating point o gives

d
d W
EAO% = 2HZ [ATMZ — APeZ]. (890)

Because Ths; = constant, and AP,; = Z;n:l %1;‘%"' Adj, we get
J

d

— A = . 91
A Aw; (8.91)
d Wsg ua aPei

- L= . .92
i Awi ijz::l < 75, M]) (8.92)

where

(8.93)

_OP&- =— Z;-”zl#i((]ij cos 07y — Djj sin 53]) j=1
85j == Cij COS 520] — Dij sin 520] j 75 )
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In matrix form we have

[ Ad ] [ Ady ]
Ab, 0 |1 ]]| Adp
[t L . 8.94
Ad)l l Aw ‘ 0 AWl ( )
L Ady, | L Awp, |
The elements of A,, are given by Eﬁf %Igji. The matrix A, can be written as
—ws OPe1 . —ws OPe1
2H1 851 2H1 85m
A, = : : . (8.95)
—ws OPem . ws OPem
2H7n 861 2H7n 867n o

The elements of A, can also be expressed in a polar notation by noting that

Cz" == EZEJBZJ == EZE]Y;] sin O(ij
and
Dij = EiEjGij = EZ'E]'YZ']' COS O(ij .
Hence, in (8.93)
0 : O _ I.EFE.V..q .. __AN©
Cyjcos 6y — Dyjsin 67 = B E; Y sin(oc; —57;). (8.96)
Therefore
oF,; — 2o EiEjYy; sin(ocij —07;) J=1
— = i (8.97)
i i R Vo N Y?) . .
j E;E;Y;j sin(oc; 5Z-j) jFi
For the 3-machine case
%[ElEQYm sin(ox12 —675) ﬁElEQYH sin(oc12 —675) ﬁ[ElESYm sin(ex13 —673)]
+E1E3Y13sin(oc13 —673)]
A —w ﬁ[ElEzyzl sin(ocg; —65;)] %[E2E1Y21 sin(oxg1 —65;) ﬁ[EzESYQS sin(x23 —6855)]
© ° +E2E3Y23 sin(ocag —353)]
ﬁlEsElYm sin(ocz1 —63,)] ﬁlEsEzY% sin(ocaz —4835)] %[ESEIYIIS sin(ocgy —65)

+E2E3Y23 sin(ocza —63,)]

(8.98)
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A, is not symmetric, since d;; = —d;;, although oc;j=oc;;. However, the sum
of the three columns = 0, hence, the rank of A, = 2. This means that
one eigenvalue of A, = 0. A, can be expressed as A, = M 'K, where
M1 = |diag (55 )| and K = [K,j]:

Kij = — Y EiE;Yjsin(oc; —0%) j=i (8.99)
J=1x
= EZE]Y;j sin(ocij —5%) j 75 1. (8100)

K;;’s are called the synchronizing coefficients, and are equivalent to those in
(8.93).

Eigenvalues of A and A,

Case (a): Transfer conductances are neglected, i.e., G;; = 0.

This implies oc;;= 4 and K;; = Kj; by inspection from (8.99) and (8.100).
Hence, the matrix K is symmetric. It can be shown mathematically that
(1) the eigenvalues of

0 U] (8.101)

A= l MK |0
are the square roots of the eigenvalues of A, = M~'K. (2) The eigenvalues
of A, are real, including one zero eigenvalue. The zero eigenvalue is due to
the fact that a reference angle is necessary, and the angles appear only as
differences. Hence, A has a pair of zero eigenvalues. If the real eigenvalues of
A, are negative, then A has complex pairs of eigenvalues on the imaginary
axis. The nonzero eigenvalues +jwy of A(k = 1,2,...,m — 1) define the
electromechanical modes. If A, has a positive real eigenvalue, then A has at
least one positive real eigenvalue, and, hence, the system is unstable.

Case (b): G #0(i # j).

K is not symmetric. However, A, will still have a zero eigenvalue. Hence,
A will also have two zero eigenvalues. It appears that the eigenvalues of A
are also the square roots of the eigenvalues of A,,.

Example 8.4

Compute the electromechanical modes with and without transfer conduc-
tances for the 3-machine system. In Example 7.6, the voltages behind tran-
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sient reactances and the reduced-order model at the internal buses around
the operating point have been computed. They are reproduced below

E{ =1.054/2.27° E5=1.05/19.75° E3=1.02/13.2°.

The Y;

int

Y

int —

matrix is given by

0.845 — 72.988 0.287 + 51.513 0.210 + 51.226
0.287 + 51.513 0.420 — 52.724 0.213 + j1.088
0.210 + 71.226 0.213 4+ 51.088 0.277 — j2.368

The elements of A, are calculated as follows

Cr2
Dy
Co1
Doy
Cs1
D31

o
12

Ws

2H,

= 62.625

Ys 99453, 2=

=7.974
7o, 2H, 2H3

1.678 , C13 =1.321, G1; = 0.845 , | Fy |= 1.054
0.318 , D13 = 0.226

1.678 , C93 = 1.165 , G = 0.420 , | E3 |=1.05
0.318 , Dy3 = 0.228

1.313, O35 = 1.165 , C33 = 0.277 , | E3 |= 1.02
0.226 , D3y = 0.228

—17.46° | 693 = —10.91° , §9; = 6.55°.

We next obtain the following quantities for use in computing elements of A,

Ci2 o807y — Di2sindyy = 1.696

Cizcosdfs — Digsindy; = 1.332
Ca1 cos 0y, — Do1sindy; = 1.506
Ca3 cos 093 — Dagsindg; = 1.139
C31cosd0g; — Ds1sindg; = 1.246
C3pcos 05y — D3asinds, = 1.191.

From (8.93), we can now calculate the elements of A,,.

Case (a):

Au

Aw for Gij 75 0 is

—24.209 13.521 10.688
= | 44.356 —77.902  33.546
78.031 74.586  —152.617
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Case (b): With G;; =0

—23.83 13.15 10.68
A, =] 4564 —79.04 33.40
78.48  74.28 —152.76

The eigenvalues of A are obtained as

Case (a):
0, 0, £ 58.7326, £ j13.393
Case (b):
0, 0, £ 79.807, + j13.435
Notice the difference by neglecting G/;. O

8.6 Power System Stabilizers

So far we have discussed the linearized model, eigenvalues, and its application
to voltage stability in the context of a multimachine power system. We now
discuss a stabilizing device, called the power system stabilizer (PSS), used to
damp out the low-frequency oscillations. Although considerable research is
being done in designing PSS for a multimachine system, no definitive results
have been applied in the field. The design is still done on the basis of a single
machine infinite bus (SMIB) system. The parameters are then tuned on-line
to suppress the modes, both the local and inter-area modes. We explain the
basic approach based on control theory, and illustrate it with an example.

8.6.1 Basic approach

The differential-algebraic nonlinear model of a single machine connected to
an infinite bus is given by

f(@,y,u) (8.102)
0 = g(x,y) (8.103)

where x is the state vector, y is the vector of algebraic variables, and g
consists of the stator algebraic and the network equations. Let the operating
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point be x°,y°, u°. The perturbed variables are z = 2° + Az, y = y° + Ay,
and u = u® + Au. Linearization of (8.102) and (8.103) leads to

Az = AAx+ BAy+ FEAu (8.104)
0 = CAz+ DAy. (8.105)

If D is invertible,
Ay=-D7'CAz (8.106)

Therefore
Ai = (A-BD'O)Az+ EAu = AgysAz+ EAu. (8.107)

A, B,C, D, and F are appropriate Jacobians of (8.102) and (8.103) evaluated
at the operating point. We illustrate the procedure for a single-machine
system. Equation (8.103) consists of the two stator algebraic equations and
the network equations in either the power-balance or the current-balance
form.

8.6.2 Derivation of K1 — K6 constants [78,88]

Historically, when low-frequency oscillations were first investigated analyt-
ically, they took a two-step approach. A single machine connected to an
infinite bus is chosen to analyze the local (plant) mode of oscillation in the
1- to 3-Hz range. A flux-decay model is linearized with Et4 as an input, and
the model so obtained is put in a block diagram form. Then a fast-acting
exciter between AV; and AFEy, is introduced in the block diagram. In the
resulting state-space model, certain constants called the K1-K6 are identi-
fied. These constants are functions of the operating point. The state-space
model is then used to examine the eigenvalues, as well as to design sup-
plementary controllers to ensure adequate damping of the dominant modes.
The real and imaginary parts of the electromechanical mode are associated
with the damping and synchronizing torques, respectively. We now outline
this approach, which is a special case of the general development discussed
in the earlier sections of this chapter.

The single machine connected to an infinite bus through an external
reactance X, and resistance R, is the widely used configuration with a flux-
decay model and stator resistance equal to zero. No local load is assumed
at the generator bus. Figure 8.7 shows the system. The flux-decay model



8.6. POWER SYSTEM STABILIZERS 249
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Figure 8.7: Single-machine infinite-bus system

of the machine only is given by (8.62)-(8.64), with Efq being treated as an
input; the equations are given below.

: 1
By = —qr Byt (Xa= X)la = Bpa) (8.108)
T T (8.109)
w o= ;Ij{ (Tar — (Byly + (Xg — Xg)laly + D(w — wy))]. (8.110)

The stator algebraic equations are given by (8.66) and (8.67), and we assume
R; = 0. We use V; to denote the magnitude of the generator terminal voltage.
The equations are

X, ~Visin(6—6) = 0 (8.111)
E,—V,cos (0—0)—Xylg = 0. (8.112)
Now
(Vi + jVe)ed0=™2) = yel?.
Hence

Vi+ iV, = Velle 30m/2) (8.113)
Expansion of the right-hand side results in

Vi+jVy = Visin(d—6)+ Vi cos (6 —0). (8.114)
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Hence, Vg = V;sin(d — 6) and V, = V; cos(d — 6). Substituting for V; and Vj,
in (8.111) and (8.112), we get the stator algebraic equations

XJ,—Vy = 0 (8.115)
E,~V,—Xil; = 0. (8.116)

The network equation is (assuming zero phase angle at the infinite bus)

(Vg 4 jVg)edO=m/2) — v /0°

(Id+ij)€j(5_7r/2) — R IX (8.117)
, Vi + jVg) = Vooe 90-7/2)
(Ig+ j1,) (Va qR) X . (8.118)

Cross-multiplying and separating into real and imaginary parts,

Rly— Xel, = Vy— Vs sin 6 (8.119)
Xlg+ R, = V;— Vs cos 6. (8.120)

We thus have, for the single-machine case, the differential equations (8.108)—
(8.110) and the algebraic equations (8.115), (8.116), (8.119), and (8.120).
We linearize them around an operating point, and eliminate the algebraic
variables 14, 14,0, V4, V, as follows.

Linearization

Step 1: Linearize the algebraic equations (8.115) and (8.116):
Al [ o x, ][ Al 0
[ AV, 1 = [ X, 0 1 [ Al N R (8.121)
Step 2: Linearize the load-flow equations (8.119) and (8.120):

AVa | _ | B —Xe Alq Voo cos 6°
[ AV, ] - [ Xe R ] [ Al ] + [ V. sin 6° ] AS. (8.122)

+

Step 3: Equate the right-hand sides of (8.121) and (8.122), and simplify

R, X+ X)) | [ AL ] 0
(X + X)) R, Al |~ | AE,

—V cos §°

+ Vs sin 6°

[ as

(8.123)
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Now

1
A —(Xe+ X)) R,

(8.124)

R, X+ x|
(X. + X% R,

[ R, (X, + X,)

where the determinant A is given by
A = RP4(Xe+ X)) (X +X0).

Solve for Al;, Al in (8.123), to get (after simplification)

Aly _ 1 (Xe+Xy) | —ReVio cos 67+ Voo sin 6°(Xy + Xe)
Al, A R, | ReVoo sin 0% + Voo cos 0°(X); + Xe)
AE]
q
[ A5 ] . (8.125)

Step 4: Linearize the differential equations (8.108)—(8.110). We introduce
the normalized frequency v = w% so that the linearized differential equations
become

- oL
AE, m, 0 0 AE,
Ad = 0 O Ws Ad
AV 5 g _Dus Av
L 2H 2H
[ 2 (X, — X! 0
Tdo( d d) Al
+ 0 0 Al
| s lo(X) — Xg) 5 (X — XI5 — 5 B !
r 1
7 0
T, AE
fd
+ 0 0 [ AT ] (8.126)
L 0 57

Step 5: Substitute for Al;, Al, from (8.125) into (8.126) to obtain

1 Ky 1

AE = — AE — Z2A5+ —AFE 12
R A A el (3120
Ad = w,Av (8.128)
. Ky ;K Duwy 1

Ay = ——2AFE — LA Av+ — AT 12
v oH "1 2y o AVt g ATy (8129)
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where
1 (Xa — X3)(Xq + Xe)
- n A (8.130)
Voo (Xg — X!
K, = %[(Xq + X.)sin §° — R, cos ¢ (8.131)
1
Ky = <A = I3(X) = X)(X, + X.) = Re(Xj = X,)I§ + R.Ey)
(8.132)
1 o 0
K, = _Z[IqVOO(XC’l — X {(Xy + X¢) sin 6° — R cos6°}
+Voo{ (X — Xg)I§ — EP (X + Xc) cos 6° + R, sin 6°}].
(8.133)
Since
Vi = JVi+V?
‘/;2 — Vd2 + ~‘/(12
VAV, = 2V7AV;+2V7AV,
Ve %
AV, = LAV + LAV, 134
f T AVa+ 3t (8.134)

Substituting (8.125) in (8.121) results in

AVy . i 0 Xy
AV, A =X, 0

—Rc Vo cos 0% + Voo (X + X ) sin 6°) ]

R, RV sin §° + Voo cos 6°(X) + Xe)
AFE n 0
A N
_ 1] xR
Al —X4X, + X0

Xg(ReVioo 8in 6% 4 Vi cos 6°( X + X.)
— X} (—ReVio €08 6% + Voo (X + X)) sin 6°)

AE! 0
q
l N ‘|+[ \E! (8.135)
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Substituting (8.135) in (8.134) gives

AV, = K5AS + KeAE], (8.136)
where
1 Vdo : 0 1) /
K; = —4=%X,[ReVoosin 6° + Vo cos 6°(X) + X.)]
ALV
VO
+7q [X)(Re Voo cos 0° — Vo (X, + X) sin 50)}} (8.137)
t
1 (Ve Ve Ve
K¢ = —{-2X,R, —-LX(X Xe} iy 1
o = xR~ XX+ Xo) |+ (3139)

The constants that we have derived are called the K1-K6, developed by
Heffron-Phillips [88], and later by DeMello-Concordia [78], for the study of
local low-frequency oscillations.

Example 8.5

In Figure 8.7, assume that R, = 0, X, = 0.5 pu, V;/0 = 1/15° pu, and
Vool0% = 1.05£0° pu. The machine data are H = 3.2 sec, T, = 9.6 sec,
K4 =400, T4 = 0.2 sec, Ry = 0.0 pu, X, = 2.1 pu, X4 = 2.5 pu, X, =
0.39 pu, D = 0, and wg = 377. Using the flux-decay model, find (1) the initial
values of state and algebraic variables, as well as Vo, Thr, and (2) K1-K6
constants.

1. Computation of Initial Conditions
The technique discussed in Section 7.6 is followed. The superscript o
on the algebraic and state variables is omitted.

(5-m/2) _ 1/15° —1.05/0°
0.5

Ige = (Ig+jl,)e = 0.5443/18°

§(0) = angle of E where E = V;e? + (R + jX,)Ige.

E = 1/15°+ (52.1)(0.5443/18°)
= 1.4788/65.52°.

Therefore §(0) = 65.52°. Ig+jl, = Igel e 70~7/2) = (0.5443/42.48°, 1, =
0.4014, and I, = 0.3676

Va+iVy = Vellei0-7/2)
= 1/39.48°.
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Hence
Va=0.77185, V, = 0.63581.
From (8.116):
E, = Vo+ X3l
0.63581 + (0.39)(0.4014) = 0.7924.
From (8.62)—(8.65), setting derivatives = 0,
Ejg = E,+(Xq— Xy
= 0.7924 + (2.5 — 0.39)0.4014 = 1.6394

Epa 1.6394
Vet =Vt 30 = T 0
ws =377, Ty = ELI,+ (Xq — X)),
—  (0.7924)(0.3676) + (2.1 — 0.39)(0.4014)(0.3676)

= 0.5436.

= 1.0041

This completes the calculation of the initial values.

. Computation of K1-K6 Constants

The formulas given in (8.130)—(8.134) and (8.137)—(8.138) are used.
A = R+ (Xe+ Xo)(Xe+ X))

— 2314
1. (Xa — Xp)(Xg + Xe)
Ky A
= 3.3707
K; = 0.296667
Xy — X!
K, = %[(Xq + X.)sin6° — R, cos §°|
= 2.26555
1. , 0 0
Ky = RlIPA — I5(X) = Xg) (X, + Xo) = Re(X) = X)I§ + ReEy)
= 1.0739.

Similiarly, K1, K5, and Kg are calculated as

K, = 09224
Ks = 0.005
K¢ = 0.3572. O
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8.6.3 Synchronizing and damping torques

To the single-machine infinite-bus system of Figure 8.7, we add a fast exciter
whose state-space equation is

TaErg = —Efa+ Ka(Vyer — Vi) (8.139)
The linearized form of (8.139) is
TaAEry = —AEp;+ Ka(AVuep— AV)). (8.140)

Then the machine differential equations (8.127)—(8.129), the exciter equation
(8.140), and the algebraic equation (8.136) can be put in the block diagram
form shown in Figure 8.8. Both the normalized frequency v and w in rad/sec

K
- (rad/sec)
.\ J 2Hs L s
ATy,
D
K,

_ +
K3 ] KA P
1+ K3 T s + 1+ ST,
AEg + *
AV AV,
K6 ref

Figure 8.8: Block diagram of the incremental flux-decay model with fast
exciter (dotted portion represents the exciter)

are shown. System loading, as well as the external network parameter X,
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affect the parameters K1 — K6. Generally these are > 0, but under heavy
loading, K5 might become negative, contributing to negative damping and
instability, as we explain below.

Damping of Electromechanical Modes

There are two ways to explain the damping phenomena:
1. State-space analysis [89]
2. Frequency-domain analysis [78]

1. State-space analysis (assume that ATy = 0)

Equations (8.127)—(8.129) are rewritten in matrix form as

: 1 _K 1

AL R R B T,

Ad = 0 0 Wg Ad + 0 AEfd.
- _K K D,

Av SH S T of Av 0

(8.141)

Note that, instead of Aw, we have used the normalized frequency deviation
Av = Aw/ws. Hence, the last row in (8.141) is

Av o= —P2ap Bing D

Av. 142
oH " o oH =7 (8.142)

AFyq is the perturbation in the field voltage. Without the exciter, the
machine is said to be on “manual control.” The matrix generally has a pair of
complex eigenvalues and a negative real eigenvalue. The former corresponds
to the electromechanical mode (1 to 3-Hz range), and the latter the flux-
decay mode. Without the exciter (i.e., K4 = 0), there are three loops in the
block diagram (Figure 8.8), the top two loops corresponding to the complex
pair of eigenvalues, and the bottom loop due to AE(’Z through K4, resulting
in the real eigenvalue. Note that the bottom loop contributes to positive
feedback. Hence, the torque-angle eigenvalues tend to move to the left-half
plane, and the negative real eigenvalue to the right. Thus, with constant E g,
there is “natural” damping. With enough gain, the real pole may go to the
right-half plane. This is referred to as monotonic instability. In the power
literature, this twofold effect is described in more graphic physical terms.
The effect of the lag associated with the time constant 77, is to increase the
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damping torque but to decrease the synchronizing torque. Now, if we add
the exciter through the simplified representation, the state-space equation
will now be modified by making AFE, a state variable. The equation for
AFEyq is given by (8.140) as

. 1 Ky
1 KAK5 KAKG ’ KA
= ———AF;;— Ab — AFE —= AV, ¢(8.143
Ta fd T T q T T ref( )

Ignoring the dynamics of the exciter for the moment, if K5 < 0 and K4 is
large enough, then the gain through 77, is approximately — (K4 + K4 K5)Ks.
This gain may become positive, resulting in negative feedback for the torque-
angle loop and pushing the complex pair to the right-half plane. Hence,
this complicated action should be studied carefully. The overall state-space
model for Figure 8.8 becomes

. 1 —K. 1
AE mr, 1, 0 1, |[ AR 0
Ad 0 0 Ws 0 Ad 0
= + AV,
. —K —K Dwg
¥ oo - N I I R
AFE fd - TI: 6 = Té\ 5 0 ;—A AFE fd Ta

The exciter introduces an additional negative real eigenvalue.

Example 8.6

For the following two test systems whose K1 — K¢ constants and other pa-
rameters are given, find the eigenvalues for K4 = 50. Plot the root locus for
varying K 4. Note that in system 1 K5 > 0, and in system 2 K5 < 0.

Test System 1

K; =3.7585 Ky = 3.6816
K3 =0.2162 K, =2.6582
K5 =0.0544 Kg=0.3616
T), =5sec H=6sec
T4 = 0.2 sec.
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Test System 2

K7 =0.9831 Ky =1.0923
K3 =0.3864 K, = 1.4746
K5 =-0.1103 Kg = 0.4477
T}, =5 sec H = 6 sec
T4 = 0.2 sec.

The eigenvalues for K4 = 50 are shown below using (8.144).

Test System 1 Test System 2
-0.353 £+ 710.946 0.015 + 55.38
-2.61 4+ 33.22 =277 + 72.88

Notice that test system 2 is unstable for this value of gain. The root loci for
the two systems can be drawn using MATLAB. An alternative way to draw
the root locus is to remove the exciter and compute the transfer function

AA E‘?ifg) = H(s) in Figure 8.8. Note that H(s) includes all the dynamics

except that of the exciter. With the G(s) = %, we can view H(s) as a
feedback transfer function, as in Figure 8.9. H(s) can be computed for each

AVref + :\ R KA
J - 1+ STA

Y

{ Av,

H(s)

Figure 8.9: Small-signal model viewed as a feedback system

of the two systems as

System 1

0.0723s% + 7.2811
$3 +0.9251s2 + 118.0795s + 47.74°

H(s) =
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System 2

0.0895s% + 3.5225
$3 +0.5176s2 + 30.88652 + 5.866

H(s) =

The closed-loop characteristic equation is given by 1+ G(s)H (s) = 0, where

G(s) = %. The root locus for each of the two test systems is shown

in Figure 8.10. System 1 is stable for all values of gain, whereas system 2

15T T T T T T T T T T

10 =

=
b N

~15 1 1 1 1 1 1 1 1 1 1
-5 45 4 35 -3 25 -2 -15 -1 -05 0
Real Axis

(a)

w
1

Imag Axis
o
T

8T T T T T T

6 @_

Imag Axis

2k -

b >

_g L 1 1 1 1
=5 —4 -3 -2 -1
Real Axis
(b)

Figure 8.10: Root loci for (a) test system and (b) test system 2

becomes unstable for K 4 = 22.108. O
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2. Frequency-domain analysis through block diagram

For simplicity, assume that the exciter is simply a high constant gain
K4, ie., assume T4 = 0 in Figure 8.10. Now, we can compute the transfer
function AE(s)/Ad(s) as

A(S(S) 1+KAK3K6+3K3TC/10. )

This assumes that AV,..¢ = 0. The effect of the feedback around Ty, is to
reduce the time constant. If K5 > 0, the overall situation does not differ
qualitatively from the case without the exciter, i.e., the system has three
open loop poles, with one of them being complex and positive feedback.
Thus, the real pole tends to move into the right-half plane. If K5 < 0 and,
consequently, K, + K4 K5 < 0, the feedback from Ad to AT, changes from
positive to negative, and, with a large enough gain K 4, the electromechanical
modes may move to the right-half plane and the real eigenvalue to the left
on the real axis. The situation is changed in detail, but not in its general
features, if a more detailed exciter model is considered.

Thus, a fast-acting exciter is bad for damping, but it has beneficial effects
also. It minimizes voltage fluctuations, increases the synchronizing torque,
and improves transient stability. With the time constant T4 present,

AE{I(S) —[(K4(1 + STA) + KAK5)]K3

= . 8.146
A5(8) KyKeKs+ (1+ KgTéOS)(l +sT4) ( )

The contribution of this expression to the torque-angle loop is given by

ATe(s) _ g AE(S) & oy (8.147)

AS(s) — TPTAS(s)

Torque-Angle Loop

Letting ATy; = 0, the torque-angle loop is given by Figure 8.11. The un-
damped frequency of the torque-angle loop (D = 0) is given by the roots of
the characteristic equation

2H
s+ K = 0 (8.148)

Ws

s12 = =%j rad/sec. (8.149)
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K
ad i 2Hs AG s AS
D
ATM = 0 U

1

o Ad
> 2H 04 Ds+ K

S

Figure 8.11: Torque-angle loop

With a higher synchronizing torque coefficient K1 and lower H, s1 2 is higher.
K, is a complicated expression involving loading conditions and external
reactances. The value of D is generally small and, hence, neglected.

We wish to compute the damping due to E{I. The overall block dia-
gram neglecting damping is shown in Figure 8.12. From this diagram and
the closed-loop transfer function, it can be verified that the characteristic
equation is given by

2H

Ws

2AS+ K1AS+ H(s)AS = 0. (8.150)

H(s)Ad therefore contributes to both the synchronizing torque and the
damping torque. The contributions are now computed approximately. At
oscillation frequencies of 1 to 3 Hz, it can be shown that K4 has negligible
effect.

Neglecting the effect of K, in Figure 8.8, we get from (8.147)

KK 4 Ks

H(s) = .
(#) 14 KK +s(T—A—|—T’)—|—52T’T
K3 6 K3 do dot A

(8.151)
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Torque-angle loop

/

1
ATy=0 —
= 2o AS
S
AT, /\
H(s)

Figure 8.12: Torque-angle loop with other dynamics added

Let s = jw. Then

—KyKaK5
(75 + KaKs — w?T),Ka) + jw(7 +T),)
— KoK Ks5(z — jy)

H(jw) =

— 8.152
33‘2 + y2 ( )
where

1
r = — + KaKg— T}, Ta (8.153)

K3

TA

Yy = w (E + Tc’lo> . (8.154)

From (8.150), it is clear that, at the oscillation frequency, if Im[H (jw)] > 0,
positive damping is implied, i.e., the roots move to the left-half plane. If
I'm[H (jw)] < 0, it tends to make the system unstable, i.e., negative damping
results. Thus

—KoyK Ksx A

RelH (jw)] = B e contribution to the synchronizing
z Yy
torque component due to H(s) (8.155)
KoK K,
Im[H(jw)] = % 2 contribution to damping
T Y

torque component due to H(s). (8.156)
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Synchronizing Torque

For low frequencies, we set w ~ 0. Thus, from (8.155):

. —KoyKaKs  —KoKj .
RelH (jw)] = R for high K 4. 8.157
) %+ KaKe Ko (3157)

Thus, the total synchronizing component is K; — KIQ{—[G(E’ > (0. K is usu-

ally high, so that even with K5 > 0 (low to medium external impedance
and low-to-medium loadings), Kl_T[?Kf’ > 0. With K5 < 0 (moderate to
high external impedance and heavy loadings), the synchronizing torque is
enhanced positively.

Damping torque

KoK K5 (24 + T4, ) w
Im[H(jw)] = x2(+22 ) . (8.158)

This expression contributes to positive damping for K5 > 0 but negative
damping for K5 < 0, which is a cause for concern. Further, with K5 < 0, a
higher K 4 spells trouble (see Figure 8.10). This may offset the inherent ma-
chine damping torque D. To introduce damping, a power system stabilizer
(PSS) is therefore introduced. The stabilizing signal may be Av, AP,
or a combination of both. We discuss this briefly next. For an extensive
discussion of PSS design, the reader is referred to the literature [77, 78].

8.6.4 Power system stabilizer design

Speed Input PSS

Stabilizing signals derived from machine speed, terminal frequency, or power
are processed through a device called the power system stabilizer (PSS) with
a transfer function G(s) and its output connected to the input of the exciter.
Figure 8.13 shows the PSS with speed input and the signal path from Av to
the torque-angle loop.
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T ATpss / Av
K, G(s) | PSS
K3 Ky [ +
S {1+sKT | Y| 1+s5Ty «)‘ﬁv
/ \ B ref
Ko

Figure 8.13: Speed input PSS

Frequency-Domain Approach [78]

From Figure 8.13, the contribution of the PSS to the torque-angle loop is
(assuming AV,.¢ =0 and Ad =0)

ATPSS _ G(S)KQKAKg
Av KaK3Kg + (1 + SKgTC/lO)(l + STA)
. G(S)KQKA
(KL;), + KAK(;) +s (% + Téo) + S2TéOTA
— G(s)GEP(s). (8.159)

For the usual range of constants [78], the above expression can be approxi-
mated as

~ G(s)K2Ka .
(7 + KaKs) [1+5 (T, / KaKe)] (1+ sTa)

(8.160)

For large values of K4 (high gain exciter), this is further approximated by

Av Ke [1+ s(T),/KaKg)| [1 + sTa] '

If this were to provide pure damping throughout the frequency range, then
G(s) should be a pure lead function with zeros, i.e., G(s) = Kpgs[l +
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s(T},/KaKe)|(1 + sT4) where Kpgg = gain of the PSS. Such a function is
not physically realizable. Hence, we have a compromise resulting in what is
called a lead-lag type transfer function such that it provides enough phase
lead over the expected range of frequencies. For design purposes, G(s) is of
the form

(1 + STl) (1 + STg) STW

G(s) = KPSS(1+ST2) Ty At sTw) KpssGi(s). (8.162)

The time constants 1%, 1o, T3, T, should be set to provide damping over
the range of frequencies at which oscillations are likely to occur. Over this
range they should compensate for the phase lag introduced by the machine
and the regulator. A typical technique [77] is to compensate for the phase
lag in the absence of PSS such that the net phase lag is:

1. Between 0 to 45° from 0.3 to 1 Hz.
2. Less than 90° up to 3 Hz.
Typical values of the parameters are:

Kpgg is in the range of 0.1 to 50

T is the lead time constant, 0.2 to 1.5 sec
T5 is the lag time constant, 0.02 to 0.15 sec
T3 is the lead time constant, 0.2 to 1.5 sec
Ty is the lag time constant, 0.02 to 0.15 sec.

The desired stabilizer gain is obtained by first finding the gain at which
the system becomes unstable. This may be obtained by actual test or by
root locus study. Ty, called the washout time constant, is set at 10 sec.
The purpose of this constant is to ensure that there is no steady-state error
of voltage reference due to speed deviation. Kpgg is set at %K}ZSS, where
K}gg is the gain at which the system becomes unstable [77].

It is important to avoid interaction between the PSS and the torsional
modes of vibration. Analysis has revealed that such interaction can occur
on nearly all modern excitation systems, as they have relatively high gain
at high frequencies. A stabilizer-torsional instability with a high-response
excitation system may result in shaft damage, particularly at light generator
loads where the inherent mechanical damping is small. Even if shaft damage
does not occur, such an instability can cause saturation of the stabilizer
output, causing it to be ineffective, and possibly causing saturation of the
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voltage regulator, resulting in loss of synchronism and tripping the unit. It
is imperative that stabilizers do not induce torsional instabilities. Hence,
the PSS is put in series with another transfer function FILT(s) [77]. A
typical value of FILT(s) ~ %. The overall transfer function of PSS
is G(s)FILT(s).

Design Procedure Using the Frequency-Domain Method

The following procedure is adapted from [90]. In Figure 8.13, let

ATpgss
Av

where GEP(s) from (8.159) is given by

GEP(s)G(s) (8.163)

KoK K
EP = . .164
CEPG) = BRoRe+ Q+sK)irsty 16V

Step 1: Neglecting the damping due to all other sources, find the un-
damped natural frequency w,, in rad/sec of the torque-angle loop from

2H 2 . . Klws
wss + K; =0, ie, s12 jwp, where w SH (8.165)
Step 2: Find the phase lag of GEP(s) at s = jw, in (8.164).
Step 3: Adjust the phase lead of G(s) in (8.163) such that
ZG(S) ’szjwn —I-ZGEP(S) ’szjwn = 0. (8166)
Let
Gls) = K <1 il STl)k (8.167)
B S '

ignoring the washout filter whose net phase contribution is approximately
zero. k =1 or 2 with 17 > T5. Thus, if k£ = 1:

[+ jwTy = L1+ junTy — LGEP(jw,). (8.168)

Knowing w,, and /GEP(jw,), we can select T1,T» can be chosen as some
value between 0.02 to 0.15 sec.
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Step 4: To compute Kpgg, we can compute Krgg, i.e., the gain at which
the system becomes unstable using the root locus, and then have Kpgg =
%K]*DSS. An alternative procedure that avoids having to do the root locus is
to design for a damping ratio £ due to PSS alone. In a second-order system
whose characteristic equation is

2H

Ws

s>+ Ds+ K, = 0. (8.169)

The damping ratio is £ = $D//MK; where M = 2H Jw,. This is shown in
Figure 8.14. The characteristic roots of (8.169) are

x _______
[N /
| \\ (l)n 1—2;2
| \
1 N
|
Loy, ! ((\—\V—’ cos™! §
; /
| /
| 7
I L7
| /
| /
v,
1/
X

Figure 8.14: Damping ratio

12 =
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We note that w,, = \/%. Therefore

D D | M D

— - — = __ - 8.170
¢ 2Mwy, 2M\ K1 2K1M ( )
Verify that
ge - B DL (D
" M 4AKG\M 2M

To revert to step 4, since the phase lead of G(s) cancels phase lag due
to GEP(s) at the oscillation frequency, the contribution of the PSS through
GEP(s) is a pure damping torque with a damping coefficient D pgg. Thus,
again ignoring the phase contribution of the washout filter,

Dpss = Kpss | GEP(8) |s=jw, || G1(8) |s=jwn| - (8.171)

Therefore, the characteristic equation is

Dpss K1
st = 0 (8.172)

ie., 52+ 2w,s + w2 = 0. As a result,

s2+

Dpss = 2w,M = Kpgs|GEP(jw,) || G1i(jwn)|. (8.173)

We can thus find Kpgg, knowing w,, and the desired £. A reasonable choice
for £ is between 0.1 and 0.3.

Step 5: Design of the washout time constant is now discussed. The PSS
should be activated only when low-frequency oscillations develop and should
be automatically terminated when the system oscillation ceases. It should
not interfere with the regular function of the excitation system during steady-
state operation of the system frequency. The washout stage has the transfer
function

STW
G = —F. 8.174
w(s) 1+ sTw (8.174)
Since the washout filter should not have any effect on phase shift or gain at
the oscillating frequency, it can be achieved by choosing a large value of Ty

so that sTy is much larger than unity

Gw(jwn) ~ 1. (8.175)
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Hence, its phase contribution is close to zero. The PSS will not have any
effect on the steady state of the system since, in steady state,

Av = 0 (8.176)

Example 8.7

The purpose of this example is to show that the introduction of the PSS will
improve the damping of the electromechanical mode. Without the PSS, the
A matrix, for example, 8.5, is calculated as

—-0.3511 —-0.236 0 0.104

0 0 377 0
—-0.1678 —-0.144 0 0
—714.4 -10 0 )

The eigenvalues are A2 = —0.0875 & j7.11, A\34 = —2.588 & j8.495. The
electromechanical mode A; 2 is poorly damped. Instead of a two-stage lag
lead compensator, we will have a single-stage lag-lead PSS. Assume that the
damping D in the torque-angle loop is zero. The input to the stabilizer is
Av. An extra state equation will be added. The washout stage is omitted,
since its objective is to offset only the dc steady-state error. Hence, it does
not play any role in the design. The block diagram in Figure 8.15 shows a

AVief
(1+ST1) + KA
— ] KPSS >
o (1+sT>) p T T+sTy AE
PSS
AV,

Figure 8.15: Exciter with PSS

single lag-lead stage of the PSS. The added state equation due to the PSS is

) 1 Kpss T, .
Ay = ——A A K —A
Y o Y+ T v+ PSST2 v
—-1 Kpss T (—Kz ;K )
= —A A K — [ —=AF — —A) 1
15 v T v PSSty \ 2H 4 2H (8.177)



270 CHAPTER 8. SMALL-SIGNAL STABILITY

The new A matrix is given as

r -1 —K4 1 i
KT, 7, 0 7 0
0 0 377 0 0
— Ko —Kq
2H 2H 0 0 0
KaKe —KaKs 0 =1 K4
Ta Ty Ta Ta
—KoTy ( Kpss —K Ty ( Kpss Kpss 0 =1
To 2H P 2H P Ts i

With a choice of Kpgg = 0.5, T1 = 0.5, T = 0.1, the new A matrix is

—0.3511 —0.236 0 0.104 O
0 0 377 0 0
—-0.1678 —0.144 0 0 0
—714.4 —10 0 -5 2000
—-042 —-036 5 0 —10
and the eigenvalues are A\ o = —0.8612 £ j7.7042, A3 4 = —1.6314 &+ j8.5504,
As = —10.3661. Note the improvement in damping of the electromechanical
mode Aj 2. O

8.7 Conclusion

In this chapter, we have discussed linear models of single and multimachine
systems with different degrees of machine and load modeling. The effect of
different types of loading on the steady-state stability was discussed for the
multimachine case; Hopf bifurcation in the context of voltage collapse was
discussed. The design of a power-system stabilizer for damping the local
mode of oscillation was discussed for the single-machine infinite-bus case.

8.8 Problems

8.1 The single line diagram for the two-area system is given in Figure 8.16.
The transmission line data, machine data, excitation system data, and
load-flow results are given in Tables 8.8, 8.9, 8.10, and 8.11.

1. Using the two-axis model for the generator and constant power
load representation, obtain eigenvalues of the linearized system.

2. Repeat (a) with one tie line out of service. Any comments?
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Area 1 Area 2

102 3 13
101 12 111 11

ot EJaB
£ 1,
Z% %12

Figure 8.16: Two-area system

8.2 With three tie lines in service, add a PSS at bus 12 with the following
parameters. Kpgg = 25, Ty = 10 sec, T1 = 0.047 sec, To = 0.021 sec,
T3 = 3.0 sec, and Ty = 5.4 sec. What are the new eigenvalues?

8.3 Repeat Problem 8.2 with two tie lines in service.

8.4 Consider the single machine connected to an infinite bus in Figure 8.7.
Assume that V,, = 1.0. The parameters are as follows:
Line: R, = 0.0, X, =04 pu
Generator: Xgq = 1.6 sec, X, = 1.55 pu, X/, = 0.32 pu, T)j, = 6.0 sec,
H = 3.0 sec
Injected power into the bus: P = 0.8 pu, @ = 0.4 pu
Exciter: K4 =50, T4 = 0.05 sec.

1. Compute the K1 — K6 constants.
2. Compute the eigenvalues. (ans: -14.5662, -5.7351, -.0808 =+ j8.55)

8.5 In a single-machine-infinite-bus system (Figure ?77?), there is a local load
at the generator bus. The parameters are
Line: Rg = —.034 pu, Xg = 0.977 pu
Generator: Xp = 0.973 pu, X, = 0.550 pu, X, = 0.230 pu, T, =
7.76 sec, H = 4.63 sec
Injected power: P = 1.0 pu, @ = 0.015 pu
Generator terminal voltage: V; = 1.05 pu
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Table 8.8: Transmission Line Data on 100 MVA Base

From Bus | To Bus | Series Resistance | Series Reactance | Shunt Susceptance
Number | Number (Rs) pu (Xs) pu (B) pu
1 101 0.001 0.012 0.00
2 102 0.001 0.012 0.00
3 13 0.022 0.22 0.33
3 13 0.022 0.22 0.33
3 13 0.022 0.22 0.33
3 102 0.002 0.02 0.03
3 102 0.002 0.02 0.03
11 111 0.001 0.012 0.00
12 112 0.001 0.012 0.00
13 112 0.002 0.02 0.03
13 112 0.002 0.02 0.03
101 102 0.005 0.05 0.075
101 102 0.005 0.05 0.075
111 112 0.005 0.05 0.075
111 112 0.005 0.05 0.075

Local load (constant impedance): G = 0.249 pu, B = 0.262 pu
Exciter: K4 =50, T4 = 0.05 sec

1. Assuming V; = V;/0°, compute Vo = Voo /.

2. Compute the Thevenin equivalent looking into the external net-
work from the generator bus as Vi, = VI /' in series with an
impedance Z;,. Show that

. Rpg +jXE
R.+iX
« IR = T (Rp 1 jXp)(G 1 JB)
Vi g e Cad

Figure 8.17: Single-machine infinite-bus case (local load)



8.8. PROBLEMS

Table 8.9: Machine Data

Variable | Machine | Machine | Machine | Machine
at Bus 1 | at Bus 2 | at Bus 11 | at Bus 12
X1 (pu) 0.022 0.022 0.022 0.022
Rs (pu) | 0.00028 | 0.00028 0.00028 0.00028
X4 (pu) 0.2 0.2 0.2 0.2
X!, (pu) 0.033 0.033 0.033 0.033
T/, (sec) 8.0 8.0 8.0 8.0
X, (pu) 0.19 0.19 0.19 0.19
X(’] (pu) 0.061 0.061 0.061 0.061
Téo (sec) 0.4 0.4 0.4 0.4
H (sec) 54.0 54.0 63.0 63.0
D (pu) 0.0 0.0 0.0 0.0

Table 8.10: Excitation System Data

Variable | Machine | Machine | Machine Machine
at Bus1 | at Bus 2 | at Bus 11 | at Bus 12
K4 (pu) 200 200 200 200
T (sec) 1 1 1 1
and
_ 1
Vth = V/p

3. Compute §(0).

1+ (Rg +jXg)(G+ jB)

= V./8.

273

4. To apply the results of Section 8.6.2, we set 3’ = 0 and replace
5(0) by 6(0) — 8. This makes the infinite bus a reference bus with
phase-angle zero.

5. Compute the K1-K6 constants and the eigenvalues. (ans: -10.316
+ 73.2644, -0.2838 £ ;j4.9496)

constants and other parameters are given:

8.6 For each of the two test systems below (Example 8.6), whose K1-K6
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Table 8.11: Load-Flow Results for the System

Bus Bus Type Voltage Angle Real Reactive Real Reactive
Number Magnitude (degrees) Power Power Power Power
(pu) Gen. (pu) Gen. (pu) Load (pu) Load (pu)
1 PV 1.03 8.2154 7.0 1.3386 0.0 0.0
2 PV 1.01 -1.5040 7.0 1.5920 0.0 0.0
11 Swing 1.03 0.0 7.2172 1.4466 0.0 0.0
12 PV 1.01 -10.2051 7.0 1.8083 0.0 0.0
101 PQ 1.0108 3.6615 0.0 0.0 0.0 0.0
102 PQ 0.9875 -6.2433 0.0 0.0 0.0 0.0
111 PQ 1.0095 -4.6977 0.0 0.0 0.0 0.0
112 PQ 0.9850 -14.9443 0.0 0.0 0.0 0.0
3 PQ 0.9761 -14.4194 0.0 0.0 11.59 -0.7350
13 PQ 0.9716 -23.2922 0.0 0.0 15.75 -0.8990

1. Write the state space model in the form (8.144). Assume D = 0.

2. Plot the root locus as K 4 is varied from a small to a high value.
At what value of K4 does instability occur and what are the
unstable eigenvalues.

3. Find the eigenvalues at K 4 = 50.

Test System 1: K; = 3.7585, Ko = 3.6816, K3 = 0.2162, K, =
2.6582, K5 = 0.0544, K¢ = 0.3616, T, = b sec, H = 6 sec, Ty =
0.2 sec.

Test System 2: K; = 0.9831, Ko = 1.0923, K3 = 0.3864, K, =
1.4746, K5 = —0.1103, K¢ = 0.4477, T}, = 5 sec, H = 6 sec, Ty =
0.24 sec.

8.7 A single machine with a flux-decay model and a fast exciter is connected
to an infinite bus through a reactance of j0.5 pu. The generator ter-
minal voltage is 1/15° and the infinite bus voltage is 1.05/0°. The
parameters and initial conditions of the state variables are given be-
low.

Parameters
H =3.2sec, T, = 9.6 sec, K4 = 400,74 = 0.2 sec

R; = 0.0017 pu, X, = 2.1 pu, X4z =2.5pu, X, =0.39 pu
D = 0,ws = 377 rad/sec
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Initial conditions using the flux-decay model and the fast exciter

5(0) = 65.52%,V4(0) =0.7719, V,(0) = 0.6358

1,00) = 0.3999,I,(0) = 0.3662

E (0) = 0.7949, E4q(0) = 1.6387,w(0) = 377 rad/sec
Vit = 1.0041,Ths = 0.542

1. Compute the KI1-K6 constants and the undamped natural fre-
quency of the torque-angle loop.

2. Compute the eigenvalues.

8.8 Find the participation factors of the eigenvalues for the following sys-
tems, where & = Ax.

1.
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Chapter 9

ENERGY FUNCTION
METHODS

9.1 Background

In this chapter, we discuss energy function methods for transient stability
analysis. In transient stability, we are interested in computing the critical
clearing time of circuit breakers to clear a fault when the system is subjected
to large disturbances. In real-world applications, the critical clearing time
can be interpreted in terms of meaningful quantities such as maximum power
transfer in the prefault state. The energy function methods have proved to
be reliable after many decades of research [93, 96]. It is now considered a
promising tool in dynamic security assessment.

9.2 Physical and Mathematical Aspects of the
Problem

The ultimate objective of nonlinear dynamic simulation of power systems
is to see whether synchronism is preserved in the event of a disturbance.
This is judged by the variation of rotor angles as a function of time. If the
rotor angle J; of a machine or a group of machines continues to increase with
respect to the rest of the system, the system is unstable. The rotor angle
0; of each machine is measured with respect to a fixed rotating reference
frame that is the synchronous network reference frame. Hence, instability of
a machine means that the rotor angle of machine ¢ pulls away from the rest

277
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of the system. Thus, relative rotor angles rather than absolute rotor angles
must be monitored to test stability/instability. Figure 9.1 shows the rotor

Rotor
Angles I
S

(a) Stable

Rotor
Rotor

Angles T Angles T
S

d;

(b) Unstable (c) Unstable

—> —>

Figure 9.1: Behavior of rotor angles for the (a) stable, and (b), (c) the
unstable cases

angles for the cases of stability and instability. Figure 9.1(a) shows that all
relative rotor angles are finite, as t — oo. In Figure 9.1(b), the rotor angle
of one machine is increasing with respect to the rest of the system; hence,
it is a single-machine instability. Figure 9.1(c) is a group of two machines
going unstable with respect to the rest of the system.

In its simplest form, a power system undergoing a disturbance can be
described by a set of three differential equations:

i) = fl(z(t) —co<t<0 (9.1)
i) = fP(a@)0 <t <ty
z(t) = flz)te <t < oo

x(t) is the vector of state variables of the system at time ¢t. At t = 0, a
fault occurs in the system and the dynamics change from f! to ff. During
0 <t <, called the faulted period, the system is governed by the fault-on
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dynamics f¥. Actually, before the fault is cleared at t = t., we may have
several switchings in the network, each giving rise to a different f¥. For
simplicity, we have taken a single f%', indicating that there are no structural
changes between ¢t = 0 and t = t.p. When the fault is cleared at t = t., we
have the postfault system with its dynamics f(z(¢)). In the prefault period
—o0 < t <0, the system would have settled down to a steady state, so that
x(0) = x, is known. Therefore, we need not discuss (9.1). We then have
only

:’c(tl;)fifo(t)) 0<t<ty (9.4)
and
o(t) = f(z(t)  t>ta (9.5)

with the initial condition z(t.s) for (9.5) provided by the solution of the
faulted system (9.4) evaluated at ¢ = t.y. Viewed in another manner, the so-
lution of (9.4) provides at each instant of time the possible initial conditions
for (9.5). Let us assume that (9.5) has a stable equilibrium point xs. The
question is whether the trajectory x(t) for (9.5) with the initial condition
x(ter) will converge to xs as t — oo. The largest value of t. for which this
holds true is called the critical clearing time t,.

From this discussion, it is clear that if we have an accurate estimate of
the region of attraction of the postfault stable equilibrium point (s.e.p) xs,
then t., is obtained when the trajectory of (9.4) exits the region of attraction
of (9.5) at x = z*. Figure 9.2 illustrates this concept for a two-dimensional

([cl = lcr)

X

T s
“**** il

Figure 9.2: Region of attraction and computation of ¢,

R

system. The computation of the region of attraction for a general nonlinear
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dynamical system is far from easy. It is not, in general, a closed region. In
the case of power systems with simple-machine models, the characterization
of this region has been discussed theoretically in the literature. The stability
region consists of surfaces passing through the unstable equilibrium points
(u.e.p’s) of (9.5). For each fault, the mode of instability (i.e., one or more
machines going unstable) may be different if the fault is not cleared in time.
We may describe the interior of the region of attraction of the postfault
system (9.5) through an inequality of the type V(x) < V., where V(z) is
the Lyapunov or energy function for (9.5). V(x) is generally the sum of the
kinetic and potential energies of the postfault system. The computation of
Ver, called the critical energy, is different for each fault and is a difficult
step. There are currently three basic methods, with a number of variations
on each method.
These methods are:

1. Lowest energy u.e.p method [99]
Ver = V(2%¢), where z"¢ is the unstable equilibrium point (u.e.p) re-
sulting in the lowest value of V. among the u.e.p’s lying on the stability
boundary of (9.5). This requires the computation of many u.e.p’s of
the postfault system and, hence, is not computationally attractive.
Moreover, it gives conservative results. Reference [99] was the first
systematic application of Lyapunov’s method for transient stability.

2. Potential Energy Boundary Surface (PEBS) method
Ver = maximum value of the potential energy component of V' (z) along

the trajectory of (9.4). This is known as the potential energy boundary
surface (PEBS) method [100].

3. Controlling u.e.p method
Ver = V(2%), at which z" is the relevant or controlling u.e.p, i.e., the
u.e.p closest to the point where the fault-on trajectory of (9.4) exits
the region of attraction of (9.5). This is called the controlling u.e.p
method first proposed in [97]. The boundary-controlling u.e.p (BCU)
method [98] (also called the exit-point method) is an efficient technique
to compute this controlling u.e.p.

We will discuss the PEBS method (2) and the controlling u.e.p method (3)
in detail. The computation of t.,. involves the following steps.

1. Computing x,, the stable equilibrium point of the postfault system
given by (9.5).
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2. Formulating V' (z) for (9.5). This is not a difficult step. Generally, V' (x)
is the sum of kinetic and potential energies of the postfault system, i.e.,
V(z) =Vke + VpE.

3. Computation of V.
In the PEBS method (2), V., is obtained by integrating the faulted
trajectory in (9.4) until the potential energy part Vpg of V() reaches
a maximum V52¥. This value is taken as V., in the PEBS method. In
the controlling u.e.p method (3) we integrate (9.4) for a short interval
followed by either a minimization problem to get the controlling u.e.p,
or integration of a reduced-order postfault system after the PEBS is
reached (BCU method) [98] to get the controlling u.e.p z*. V,, is given

by V(z") = Vpg(z"), since Vg is zero at an u.e.p.

4. Calculating the time instant ¢, when V(x) = V., on the faulted tra-
jectory of (9.4). The faulted trajectory has to be integrated for all
the three methods to obtain ... In the PEBS method (2), the faulted
trajectory is already available while computing V... It is also available
in the BCU method. The computation time is least for the PEBS
method (2). The relative merits of these various methods and their
variations are discussed extensively in the literature [101].

9.3 Lyapunov’s Method

In 1892, A. M. Lyapunov, in his famous Ph.D. dissertation [118], proposed
that the stability of the equilibrium point of a nonlinear dynamic system of
dimension n

o= flx) f(0) = 0 (9.6)

can be ascertained without numerical integration. He said that if there exists
a scalar function V (x) for (9.6) that is positive-definite, i.e., V(x) > 0 around
the equilibrium point “0” and the derivative V(w) < 0, then the equilibrium
is asymptotically stable. V(z) is obtained as 7, g—;/;j:i =y, g—;/i fi(z) =
vV . f(x) where n is the order of the system in (9.6). Thus, f(z) enters
directly in the computation of V(). The condition V(z) < 0 can be relaxed
to V(x) < 0, provided that V() does not vanish along any other solution
with the exception of x = 0.

V(x) is actually a generalization of the concept of the energy of a sys-
tem. Since 1948, when the results of Lyapunov appeared in the English
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language together with potential applications, there has been extensive lit-
erature surrounding this topic. Application of the energy function method
to power system stability began with the early work of Magnusson [102] and
Aylett [103], followed by a formal application of the more general Lyapunov’s
method by El-Abiad and Nagappan [99]. Reference [99] provided an algo-
rithmic procedure to compute the critical clearing time. It used the lowest
energy u.e.p method to compute V... Although many different Lyapunov
functions have been tried since then, the first integral of motion, which is
the sum of kinetic and potential energies, seemed to have provided the best
result. In the power literature, Lyapunov’s method has become synonymous
with the transient energy function (TEF) method and has been applied suc-
cessfully [93, 98]. Today, this technique has proved to be a practical tool in
dynamic security assessment. To make it a practical tool, it is necessary to
compute the region of stability of the equilibrium point of (9.5). In physi-
cal systems, it is finite and not the whole state-space. An estimate of the
region of stability or attraction is characterized by an inequality of the type
V(z) < Vgr. The computation of V., remained a formidable barrier for a long
time. In the case of a multimachine classical model with loads being treated
as constant impedances, there are well-proved algorithms. Extensions to
multimachine systems with detailed models have been made [104, 106].

9.4 Modeling Issues

In applying the TEF technique, we must consider the model in two time
frames, as follows:

1. Faulted system

i = fEa@®), 0<t<ty. (9.7)
2. Postfault system
©o= flz(t)), t>tu. (9-8)

In reality, the model is a set of differential-algebraic equations (DAE), i.e.,

= fI2),y(t) (9.9)
0 = g"(z(t),yt), 0<t<ty (9.10)
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and

= [flz(t),y(1)) (9.11)
0 = glx(t),y(t)), t > te. (9.12)

The function g represents the nonlinear algebraic equations of the stator
and the network, while the differential equations represent the dynamics of
the generating unit and its controls. In Chapter 7, the modeling of equa-
tions in the form of (9.9) and (9.10) or (9.11) and (9.12) has been cov-
ered extensively. Reduced-order models, such as a flux-decay model and a
classical model, have also been discussed. In the classical model represen-
tation, we can either preserve the network structure (structure-preserving
model) or eliminate the load buses (assuming constant impedance load) to
obtain the internal-node model. These have also been discussed in Chap-
ter 7. Structure-preserving models involve nonlinear algebraic equations in
addition to dynamic equations, and can incorporate nonlinear load mod-
els leading to the concept of structure-preserving energy function (SPEF)
V(z,y), while models consisting of differential equations lead only to closed-
form types of energy functions V' (z). The work on SPEF by Bergen and
Hill [104] has been extended to more detailed models in [105]-[108].

It is not clear at this stage whether a more detailed generator or load
model will lead to more accurate estimates of t... What appears to be true,
however, from extensive simulation studies by researchers is that, for the
so-called first-swing stability (i.e., instability occurring in 1 to 2 sec inter-
val), the classical model with the loads represented as constant impedance
will suffice. This results in only differential equations, as opposed to DAE
equations. Both the PEBS and BCU methods give satisfactory results for
this model. We first discuss this in the multimachine context. The swing
equations have been derived in Section 7.9.3 (using P, = Th;) as

2H,; d?6; do; .
wslf;—kDid—tZ = Ppi— Py, i=1,....,m (9‘13)

where

P, = E?G” + Z(CZJ sin 5ij + Dij CoS 51]) (9.14)
j=1

#i
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Denoting 2W—Iil = M,; and P, = P — EZ-QGZ-Z-, we get

d?6; do; “ .
MZW + Dz% =P, — jzzli(cw Sin 5ij + Dij Ccos 51]) (915)

which can be written as

25. )
d5’+Did—5’ = P, —Py(6;i...0m), i=1,....,m.  (9.16)

M=
a2 dt

Let «; be the rotor angle with respect to a fixed reference. Then §; = a; —wgt.
Si = % — W 2 w; —ws, where w; is the angular velocity of the rotor and wy is
the synchronous speed in radians per sec. Thus, both d; and §; are expressed
with respect to a synchronously rotating reference frame. Equation (9.16)

is converted to a set of first-order differential equations by introducing the
state variables ¢; and w;:

5,' = W; — Ws (917)
o = ﬁ(PZ-—Pei(él,...,ém)—D,-(w,-—ws)) i=1,....m. (9.18)

Equations (9.17) and (9.18) are applicable both to the faulted state and
the postfault state, with the difference that P,; is different in each case,
because the internal node admittance matrix is different for the faulted and
postfault system. The model corresponding to (9.17)—(9.18) is known as
the internal-node model since the physical buses have been eliminated by
network reduction.

9.5 Energy Function Formulation

Prior to 1979, there was considerable research in constructing a Lyapunov
function for the system (9.15) using the state-space model given by (9.17)
and (9.18) [109]-[112]. However, analytical Lyapunov functions can be con-
structed only if the transfer conductances are zero, i.e., D;; = 0. Since these
terms have to be accounted for properly, the first integrals of motion of the
system are constructed, and these are called energy functions. We have two
options, to use either the relative rotor angle formulation or the center of in-
ertia formulation. We use the latter, since there are some advantages. Since
the angles are referred to a center of inertia, the resulting energy function is
called the transient energy function (TEF).
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In this formulation, the angle of the center of inertia (COI) is used as
the reference angle, since it represents the “mean motion” of the system.
Although the resulting energy function is identical to V'(§,w) (using relative
rotor angles), it has the advantage of being more symmetric and easier to
handle in terms of the path-dependent terms. Synchronous stability of all
machines is judged by examining the angles referenced only to COI instead
of relative rotor angles. Modern literature invariably uses the COI formula-
tion. The energy function in the COI notation, including D;; terms (transfer
conductances), was first proposed by Athay et al. [97].

We derive the transient energy function for the conservative system (as-
suming D; = 0). The center of inertia (COI) for the whole system is defined
as

1 & 1 &
0o Z M;6; and the center of speed as w, = iy Z M;w; (9.19)

Mrp =

where My = Y7 M;. We then transform the variables §;,w; to the COI
variables as 0; = §; — 0,, W; = w; — w,. It is easy to verify

0; = 6;— 9
= W; —Wo
A L
= Wi.

The swing equations (9.15) with D; = 0 become (omitting the algebra):

d*9; = . M,
MZW = Pz — Z (CZ] S11 Hz'j + Dij (¢0)3] 9”) — Yz PCOI
J=1z; T
2 f0)i=1,....m (9.20)

where

m m m
P = Pui—E}Gi Pcor = Y Pi—2) Y Dijcost.
i=1 i=1 j=i+1

If one of the machines is an infinite bus, say, m whose inertia constant
M, is very large, then J\Af; Pcor = 0(i # m) and also 6, ~ d,, and w, ~
Wy, The COI variables become 6; = §; — d,,, and @w; = w; — w,,. In the
literature where the BCU method is discussed [98], d,, is simply taken as
zero. Equation (9.20) is modified accordingly, and there will be only (m —1)

equations after omitting the equation for machine m.
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We consider the general case in which all M/s are finite. Corresponding to
the faulted and the postfault states, we have two sets of differential equations,

dw;
M = fF0)0 <t <ty
dt
% — &, i=1,2....m (9.21)
and
dw;
M,— = fi(0)t>t.
L fi(@)t > tes
do; o
il w1 =1,2,...,m. (9.22)

Let the postfault system given by (9.22) have the stable equilibrium point

at 0 = 0°, 0 = 0. 69 is obtained by solving the nonlinear algebraic equations
fi(0) = 0, i=1,....,m. (9.23)

Since Y ;" M;0; = 0, 6,, can be expressed in terms of the other #;’s and
substituted in (9.23), which is then equivalent to

fi1, .. 0pq) = 0, i=1,...,m—1. (9.24)

The basic procedure for computing the critical clearing time consists of the
following steps:

1. Construct an energy or Lyapunov function V(0,o) for the system
(9.22), i.e., the postfault system.

2. Find the critical value of V (0, @) for a given fault denoted by V.

3. Integrate (9.21), i.e., the faulted equations, until V(0,&) = V... This
instant of time is called the critical clearing time t;.

While this procedure is common to all the methods, they differ from
one another in steps 2 and 3, i.e., finding V.. and integrating the swing
equations. There is general agreement that the first integral of motion of
(9.22) constitutes a proper energy function and is derived as follows [94].

From (9.22) we have, fori=1,...,m
doy  Madws

 Mydin dy _ Mndim _ O g o

COAO) e R00) @ fu®) Om

dt
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Integrating the pairs of equations for each machine between (67,0), the post-
fault s.e.p to (0;, ;) results in

1 0i
Vilh.5) = 5Mid? —/ FO0)d, i=1,....m.  (9.26)
o7
This is known in the literature as the individual machine energy func-

tion [113]. Adding these functions for all the machines, we obtain the first
integral of motion for the system as (omitting the algebra):

V(h,o) = EZM@? —Z/es f:(0)do; (9.27)
i=1 i=1"Y
1 m m m—1 m
= 3 ZM,@? — sz(@z —67) — Z Z [C,-j(coseij —cos6;)
i=1 i=1 i=1 j=i+1
0;+6;
—/ ’ Dij CcOS Hljd(tgz + 9]) (9.28)
03+
= VKE((D) + VPE(H) (9.29)

since

Sap | Peordsi = o
=1 M Jo;

Note that (9.28) contains path-dependent integral terms. In view of this,
we cannot assert that V; and V' are positive-definite. If D;; = 0, it can be
shown that V(6,©) constitutes a proper Lyapunov function [93, 109, 110].

9.6 Potential Energy Boundary Surface (PEBS)

We first discuss the PEBS method because of its simplicity and its natural
relationship to the equal-area criterion.

Ever since it was first proposed by Kakimoto et al. [100] and Athay et al. [97],
the method has received wide attention by researchers because it avoids com-
puting the controlling (relevant) u.e.p and requires only a quick fault-on sys-
tem integration to compute V... We can even avoid computing the postfault
s.e.p., as discussed in Section 9.6.5. In this section, we will first motivate the
method through application to a single-machine infinite-bus system, estab-
lish the equivalence between the energy function and the equal-area criterion,
and, finally, explain the multimachine PEBS method.
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9.6.1 Single-machine infinite-bus system

Consider a single-machine infinite-bus system (Figure 9.3). Two parallel

M jX,/ J X1
QU -

I L]

F Infinite Bus

Figure 9.3: Single-machine infinite-bus system

lines each having a reactance of X; connect a generator having transient
reactance of X/, through a transformer with a reactance of X; to an infinite
bus whose voltage is F5/0°. A three-phase fault occurs at the middle of
one of the lines at t = 0, and is subsequently cleared at t = ¢, by opening
the circuit breakers at both ends of the faulted line. The prefault, faulted,
and postfault configurations and their reduction to a two-machine equiva-
lent are shown in Figures 9.4, 9.5, and 9.6. The electric power P, during

JX1

. ’ .

JXa J X

/YY)
/Y'Y YN
E1 £ JX1 Er £0°
/Y YY)
2d
Ey £8 E, £0°

Figure 9.4: Prefault system and its two-machine equivalent

FE1FE>

prefault, faulted, and postfault states are =7 sind, ErEpsind

2, and
respectively. The computation of X! for the prefault system and X for the
postfault system is straightforward, as shown in Figures 9.4 and 9.6.

FE1FE5siné
X bl
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JX1
, Y Y Y\
JXd J Xt
2228 X1 . X1
_r _
Ey 45 :F Ey £0°
) @ )
jX1
/Y Y Y Y YY)
JiXa+ X))
E1 £8 J % j % By £0°
(b)
Y YY)
jxF
E| £3 Epy £0°

©)

Figure 9.5: Faulted system and its two-machine equivalent

Example 9.1

289

Compute X¥ for the faulted system in Figure 9.3. X' is the reactance
between the internal node of the machine and the infinite bus. It can be
computed for this network by performing a ¥ — A transformation in Fig-
ure 9.5(b). It is more instructive to illustrate a general method that is
applicable to the multimachine case as well. Figure 9.5(a) is redrawn after
labeling the various nodes (Figure 9.7). The point at which the fault occurs
is labeled node 4. X, = X/, + X;. There are current injections at nodes 1,

2, and 4, and none at node 3. The nodal equation is

I Y11 0 Yi3 0 Eq
I _ 0 Yo Yoz Yo Es
0 Y31 Yo Yz Yy V3

Iy 0 Yo Yo Yy Vi
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JX;+ X, +X))=jX
Y YN

E| £6 Er L0°

Figure 9.6: Postfault system and its two-machine equivalent
3 JXi

1 JXe

E; £8 4 E» Z0°

Figure 9.7: Faulted system

Since the fault is at node 4 with the fault impedance equal to zero, V4 = 0.
Hence, we can delete row 4 and column 4, resulting in

I Yiiu 0 Yi3 Ey
P = 0 Yoo Yo3 Eo
0 Y31 Y3 Y33 V3

Node 3 is eliminated by expressing V3 from the third equation in terms of F
and Fy and substituting in the first two equations. This results in (omitting
the algebra):

I _ Yi1— Y13Y})§1Yé1 —Y13Y})§1Yé2 Eq
I ~Yo3Yg3'Y31 Yoo — Ya3Yi3'Vao Eo

XT can be computed from the off-diagonal entry as

1

XF Y13Yss' Yao.
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Now

-1 11 1\ '/

YoV = (=) (x+x+x) ()
a3 ]Xg ]Xg JX1 i % JX1
B 1
3(X1+3X,)

Hence

X = X1 +3X,.
We do not require the other elements of the reduced Y matrix. |

9.6.2 Energy function for a single-machine infinite-bus sys-
tem

The energy function is always constructed for the postfault system. In the
SMIB case, the postfault equations are

&)

M
dt?

P, — PM3%gin§ (9.30)

where PIAX — ELL2 5 g the angle relative to the infinite bus, and fl—‘z =wis
the relative rotor-angle velocity. The right-hand side of (9.30) can be written

—0VpE
as — 5L, where

Vep(§) = —Pnd— PM** cosd. (9.31)

Multiplying (9.30) by fl—f, it can be rewritten as

2
%[g (z—i) +VPE(5)] =0

ie.,

ie.,

V(o,w)] = 0 (9.32)
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Hence, the energy function is
1
V(,w) = §Mw2 + Vpr(6). (9.33)

It follows from (9.32) that the quantity inside the brackets V' (6, w) is a con-
stant. The equilibrium point is given by the solution of 0 = P, — PM#Xsin g,

ie., 8 =sin! (Pﬁl#). This is a stable equilibrium point surrounded by

two unstable equilibrium points é* = © — 4% and 6y = —m — &°. If we make
a change of coordinates so that Vpp = 0 at § = 6%, then (9.31) becomes

Vpg(6,6%) = —Ppn(d —6°) — PM®(cos § — cos §°). (9.34)
With this, the energy function V' (§,w) can be written as

V(d,w) = %sz — P (6 — 6%) — PM3X(cos § — cos 6%)

= Vi + Veu(s,6%) (9.35)

where Vg = %Muﬂ is the transient kinetic energy and Vpg(d, §°) = — P, (d—
§%) — PMaX(cos § —cos 6%) is the potential energy. From (9.32) it follows that
V(d,w) is equal to a constant F, which is the sum of the kinetic and poten-
tial energies, and remains constant once the fault is cleared since the system
is conservative. V(J,w) evaluated at ¢t = t.y from the faulted trajectory rep-
resents the total energy E present in the system at ¢t = t.. This energy
must be absorbed by the system once the fault is cleared if the system is
to be stable. The kinetic energy is always positive, and is the difference
between E and Vpg(9,d°). This is shown graphically in Figure 9.8, which is
the potential energy curve.

At § = 6%, the postfault s.e.p, both the Vg g and the Vpg are zero, since
w = 0 and § = 6° at this point. Suppose that, at the end of the faulted
period t = t., the rotor angle is § = 6, and the velocity is w. Then

1

Vet W) = §ngz — P (6% — 6%) — P (o5 5% — cos 6%)
= V& + VEL. (9.36)

This is the value of E. There are two other equilibrium points of the system
(9.30), namely, 0% = m — 0% and §* = —m — §°. Both of these are unstable
and, in fact, are Type 1 (saddle-type) e.p.’s. Type 1 e.p.’s are characterized
by the fact that the linearized system at that e.p. has one real eigenvalue
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VprE T

E

M=-—m—0

Figure 9.8: Potential energy “well”

in the right-half plane. The potential energy is zero at § = §° and has a
relative maximum at § = 0% and § = §%. At the point (a), 6 and w® are
known from the faulted trajectory; hence, V (6%, w) = E is known. This is
shown as point (b). If E < Vpg(d"), then since the system is conservative,
the cleared system at point (a) will accelerate until point (b), and then
start decelerating. If £ > Vpg(d“), then the cleared system will accelerate
beyond §* and, hence, the system is unstable. Vpg(d*) is obtained from
(9.34) as — P, (7 — 20%) + 2PM3X 05§55, If § decreases due to deceleration
for ¢t > 0, then the system is unstable if £ > V(gu) The points 6% and §*
constitute the zero-dimensional PEBS for the single-machine system. Some
researchers restate the above idea by saying that if the Vpg is initialized
to zero at 6, V[‘égE represents the excess kinetic energy injected into the
system. Then stability of the system is determined by the ability of the
postfault system to absorb this excess kinetic energy (i.e., the system is
stable if Vpp(§*) — Vpp(6%) > VL),

Most of the stability concepts can be interpreted as if the moment of
inertia M is assumed as a particle that slides without friction within a “hill”
with the shape Vpg(d). Motions within a potential “well” are bounded and,
hence, stable. It is interesting to relate the potential “well” concept to the
stability of equilibrium points for small disturbances. Using (9.31), (9.30)
can be written as

@5 OVee(d)

M = =7
dt? 06

(9.37)
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We can expand the right-hand side of (9.37) in a Taylor series about an
equilibrium point ¢*, i.e., § = 6* + A, and retain only the linear term.
Then

d> A 0*Vpg(0)
M—dt2 = 75 ) Ad (9.38)
i.e.,
d’AS  0*Vpg(6)
M 72 + 95 ) A = 0. (9.39)

If 828?5‘5 5 < 0, the equilibrium is unstable. If 328?513 5 > 0, then it is an
oscillatory system, and the oscillations around 6* are bounded. Since there
is always some positive damping, we may call it stable. In the case of (9.30),
it can be verified that §° is a stable equilibrium point and that both % and
5% are unstable equilibrium points using this criterion.

The energy function, Lyapunov function, and the PEBS are thus all
equivalent in the case of a single-machine infinite-bus system. It is in the
case of multimachine systems and nonconservative systems that each method
gives only approximations to the true stability boundary! In the case of

multimachine systems, the second derivative of Vpg is the Hessian matrix.
Example 9.2

Consider an SMIB system whose postfault equation is given by

d?s . dd

The equilibrium points are given by §° = sin™! (%) Hence, 6% = %,0" =

T—§ = %’T, §u = — — 5= _TM‘ Linearizing around an equilibrium point
“0” results in
d>AS dA§
0.2 = —2co0sd’Ad —0.02—.
dt? dt

This can be put in the state-space form by defining Ad, Aw = AJ as the

state variables.
AS | 0 1 AS
Aw o —10cosé6° —0.1 Aw
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For §° = 6% = %, eigenvalues of this matrix are A\; 2 = —0.05 £ j2.942. Tt is a

stable equilibrium point called the focus. For §° = 6 or 5“, the eigenvalues
are Ay = 2.993 and Ay = —2.893. Both are saddle points. Since there is only
one eigenvalue in the right-half plane, it is called a Type 1 u.e.p. O

Example 9.3

Construct the energy function for Example 9.2. Verify the stability of the
equilibrium points by using (9.39).

The energy function is constructed for the undamped system, i.e., the
coefficient of £ is set equal to zero. M = 0.2, P, = 1, PMaX =2, §° = x.
The energy function is

V(bw) = %(0.2)w2 —1(0 —7/6) — 2(cos § — cos %)
= 0.1w?— (0~ %) — 2(cos d — (0.866))
Vpr(6,0°) = —(6— %) — 2(cos § — 0.866)
0?Vpg(8,58%)
T = 2cos).

At 6 = ¢6° = 7r/§, 2cosd > 0; hence §° is a stable equilibrium point. At
6 =0"= %” or 6% = _T”, 2cosd < 0. Hence, both §* and d* are unstable
equilibrium points. O

9.6.3 Equal-area criterion and the energy function

The prefault, faulted, and postfault power angle curves P, for the single-
machine infinite-bus system are shown in Figure 9.9. The system is initially
at & = 0°. We shall now show that the area A; represents the kinetic
energy injected into the system during the fault, which is the same as VIC{ZE
in Figure 9.8. As represents the ability of the postfault system to absorb
this energy. In terms of Figure 9.8, Ao represents Vpg(6*) — Vpg(6%). By
the equal-area criterion, the system is stable if A1 < As.
Let the faulted and postfault equations, respectively, be

&5

M
dt?

= P,—Plsiné (9.40)
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Pre-fault

max

Post-fault

Faulted

and
d25 max
MW = P, — P, “"sind (9.41)
where
FE FE
ro 1102

P’ = ~F

and
F1E,
Pmax —
€ X

The area A; is given by

A = / e (Pm ~ Plsing) o

= Mw dw = %M(wcg)2. (9.42)
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Hence, A; is the kinetic energy injected into the system due to the fault.
Area A is given by

5u
Ay = / (Psing — Pp)dd = — P (cos 8" — cos 6)
6c

_Pm(éu _ 605)
= Vpp(0") = Vpe(6%)

from (9.31). If we add area Az to both sides of the criterion A; < Aj, the
result is

A1+ A3 < Ay + As. (9.43)

Now

de
A = /Z(Pglaxsma—Pm)da

= —P, (5CZ - 55) — prax (cos 6 — cos 58) . (9.44)
Changing 6%, w to any §,w and adding A; to As, gives
1
A+ A = §Mw2 — P(6 —6°) — P"(cos § —cos6®).  (9.45)

This is the same as V(0,w) as in (9.35). Now, from Figure 9.9:

T—0%
Ayt Ay = / (P™sin§ — P,,)ds

S

= 2P cosd® — Py (m —25°). (9.46)

The right-hand side of (9.46) is also verified to be the sum of the areas
Ao and Ag, for which analytical expressions have been derived. It may be
verified from (9.35) that

V(0,w) |s—su = —Pp(m—26°)+ 2P cosd® = Ay + As
w=0
= Vpgr(d")
2 v, (9.47)

Thus, the equal-area criterion A; < As is equivalent to A1 + A3 < Ay + As,
which in turn is equivalent to

V(ibw) < Ve (9.48)

where V., = Vpg(d"). Note that J, w are obtained from the faulted equation.
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Example 9.4

For Example 9.2, (1) state analytically the equal-area criterion. (2) If the
faulted system is given by

0.2d%5 dé
——— = 1-—sind —0.02—
dt? dt
compute t. using the results of part (1). Note that the energy function is
for a conservative system, while the faulted system is not conservative.
The energy function is given by

V(i§w) = %(0.2)0)2 —1(6 — %) —2(cosd — cos %)
= 0.1w?— (56— %) — 2cos 6 + 1.732

= 0.1w? =8 —2cosd + 2.256
V(6“,0) = —P,(r —20°) + 2P cos §°
( 27T) + 4 cos T
= _— 7'[' _—— —
6 6
= —2.09+3.464 = 1.374.

Hence, the equal-area criterion is
V(io,w) < 1.374

where 0, w are calculated from the fault-on trajectory. To obtain t.., the
faulted equations are integrated and V(d,w) are computed at each time
point. When V' (4,w) = 1.374, the time instant is t.,. O

9.6.4 Multimachine PEBS

In the previous section, we mentioned that the points 6% and 5 were the
zero-dimensional PEBS for the SMIB system. In the case of multimachine
systems, the PEBS is quite complex in the rotor-angle space. A number
of unstable equilibrium points surround the stable equilibrium point of the
postfault system. The potential energy boundary surface therefore consti-
tutes a multidimensional surface passing through the u.e.p’s. The theory
behind the characterization of the PEBS is quite detailed, and is dealt with
in the literature [93, 94]. We can extend the concept of computing V., using
the PEBS method for a multimachine system as follows.
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In the previous section, we showed that in the SMIB case V. = Vpg(d*),
ie., V(6,w) is evaluated at the nearest equilibrium point (6*,0) if the ma-
chine loses synchronism by acceleration. " is therefore not only the nearest,
but also the relevant (or controlling), u.e.p in this case. In the case of the
multimachine system, depending on the location and nature of the fault,
the system may lose synchronism by one or more machines going unstable.
Hence, each disturbance gives rise to what is called a mode of instability
(MOI) [114]. Associated with each MOI is an u.e.p that we call the con-
trolling u.e.p for that particular disturbance. A number of u.e.p’s surround
the s.e.p of the postfault system. Mathematically, these are the solutions
of (9.23). From the prefault s.e.p, if the faulted system is integrated and
cleared critically, then the postfault trajectory approaches a particular u.e.p
depending on the mode of instability. This u.e.p is called the controlling
u.e.p for that disturbance. In the multimachine PEBS, we can visualize a
multidimensional potential “well” analogous to Figure 9.8 for the SMIB case.
For a three-machine system, one such “well” is shown in Figure 9.10 where
the axes are the COl-referenced rotor angles 01, 05 of two machines. The ver-
tical axis represents Vpg(#). Equipotential contours are shown, as well as
the three nearby u.e.p’s Uy, Us, Us. The dotted line connecting these u.e.p’s
is orthogonal to the equipotential curves and is called the PEBS. If at the
instant of fault-clearing the system state in the angle space has crossed the
PEBS, the system will be unstable. If the fault is cleared early enough, then
the postfault trajectory in the angle space will tend to return to equilibrium
eventually because of the damping in the system. The critical clearing time
ter is defined to be the time instant such that the postfault trajectory just
stays within the “well.” Tt is a conjecture that the critically cleared trajectory
passes “very close” to the controlling u.e.p. This is called the “first swing”
stable phenomenon. To find the critical value of V'(§,w), the fault-on trajec-
tory is monitored until it crosses the PEBS at a point 8*. In many cases, 8%,

the controlling u.e.p, is close to 6%, so that Vpg(0") ~ Vpg(0*) 2 Ver. This
is the essence of the PEBS method. A key question here is the detection of
the PEBS crossing. This crossing is also approximately the point at which
Vpp(f) is maximum along the faulted trajectory. Hence, V., can be taken
as equal to VEE*(0) along the faulted trajectory. It can be shown [97] that
the PEBS crossing is also the point at which f7(6) - (0 — %) = 0. f(0) is
the accelerating power in the postfault system. That this is the same point
at which Vpg(0) is maximum has been shown to be true for a conservative
system [93]. In recent years, this PEBS crossing method has been the basis
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Figure 9.10: The potential energy boundary surface (reproduced from [97]

of improved algorithms such as the “second kick” method [115]. We now
explain the basic PEBS algorithm in detail. It will help in understanding
the newer algorithms. The energy function given by (9.28) is repeated here:

3

V(0,5) = %Z Ma2 S R0 — 05— S [Cijlcos by — cos 05))
=1 =1

i=1 j=i+1

+

0;+6;
— / ’ Dij cos Gwd(ﬁl + 93)] (949)
0403

The last term on the right-hand side of (9.49) denoted by V4(0) is a path-
dependent term. This can be evaluated using trapezoidal integration as

m—1

Va(f) = i I (9.50)

i=1 j=i+1
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where at the kth step
Tg(k) = Tylk = 1)+ 5 Disleos(Bh(k) — 05(R)) + cos(Bi(k — 1) — bk — 1))]
6:(k) + 6; (k) — 0, (k — 1) — 6;(k — 1)) (9.51)
with
I;;(0) = 0.

This evaluation of I;;(0) is correct when the postfault system is the same
as the prefault system, but is somewhat inaccurate if there is line-switching.
This is explained in the next section. Equation (9.49) is rewritten as

V(0,0) = Vigp@)+ V,(0)+ Vi) (9.52)
where
Vep(®) = Vy(®)+ Val0) (9.53)
Vp(0) = — ZPZ-(GZ- —67) — Z Z Cij(cos bij — cos0;;)
i=1 i=1 j=i+1

and V() is given by (9.50). It can be shown [97] that the points 6 on the
PEBS are defined by Y%, fi(6)(0; — 67) = 0. This is the characterization
of the PEBS. In vector form, this can be written as f7(0) - (6 — 6%) = 0.

Denoting 0 —60° = é, we can show by analogy to the zero transfer conductance

case that inside the PEBS f7(0)-6 < 0, and outside the PEBS it is > 0 [93].
In the absence of transfer conductances, f(0) = _av%ig(e)‘ When 0 is away
from 6°, within the potential multidimensional “well,” 8\/%7];(0) (which is the

gradient of the potential energy function) and 0 (i.e., (6 —6%)) are both > 0.
Hence, f7(#) -6 < 0 inside the “well.” Outside the “well,” § —0° is > 0 and
8\/%75(0) < 0, resulting in f7(#) - > 0. On the PEBS, the product f7(0) -6
is equal to zero.

The steps to compute t.- using the PEBS method are as follows:

1. Compute the postfault s.e.p 6° by solving (9.23).

2. Compute the fault-on trajectory given by (9.21).
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3. Monitor f7(0) -0 and Vpg(0) at each time step. The parameters in
f(0) and Vpg(0) pertain to the postfault configuration.

4. Inside the potential “well” f T(#) -0 < 0. Continue steps 2 and 3 until
fT(0) -6 = 0. This is the PEBS crossing (t*,0*,&*). At this point,
find Vpgr(6*). This is a good estimate of V., for that fault.

5. Find when V(é,&)) = V., from the fault-on trajectory. This gives a
good estimate of t,.

One can replace steps 3 and 4 by monitoring when V55*(0) is reached, and
taking it as V... There will be some error in either of the algorithms.

9.6.5 Initialization of Vpg(f) and its use in PEBS method

In this section, we outline a further simplification of the PEBS method that
works well in many cases, particularly when 6° is “close” to 6°. While
integrating the faulted trajectory given by (9.21), the initial conditions on
the states are 6;(0) = 62 and ©;(0) = 0. In the energy function (9.29), the
reference angle and velocity variables are 67 and @;(0) = 0. Thus, at ¢t =0,
we evaluate Vpg(6) in (9.29) as

m 09
Ves(0?) = =3 [ " si)do

=1 K3
m m—1 m
= S RO -3 3
=1 i=1 j=i+1
09+02
Cij(cos 07; — cos 07;) — / D;j cos 6;;d(6; + 6;)
9?4—95
= K (a constant). (9.54)

The path-dependent integral term in (9.54) is evaluated using the trapezoidal
rule:

1;(0) = %Dij [cos(B¢ — 69) + cos(8; — 6)] (69 +69) — (6 + 67)] . (9.55)

If the postfault network is the same as the prefault network, then K = 0.
Otherwise, this value of K should be included in the energy function.

If one uses the potential energy boundary surface (PEBS) method, then
when the postfault network is not equal to the prefault network, this term
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can be subtracted from the energy function, i.e.,
V(Q,(D) = VKE(JJ) + VPE(Q) — VPE(QO). (9.56)

Hence, the potential energy can be defined, with #° as the datum, as

Vop(0) 2 Vpp(0) — Vpp(0°) = — li 9 fi(e)dei_f:/eff ﬁ(e)dei]

i—170; i=1"9;

If the path-dependent integral term in (9.57) is evaluated, using trape-
zoidal integration as in (9.51), I;;(0) = 0. At the PEBS crossing 6*, Vpe(6%)
gives a good approximation to V.. The PEBS crossing has been shown as
approximately the point at which the potential energy Vpg reaches a max-
imum value. Hence, one can directly monitor Vpg and thus avoid having
to monitor the dot product f7(6)- (6 — #*%) as in step 4 of the previous sec-
tion. This leads to the important advantage of not having to compute 6°.
In fast screening of contingencies, this could result in a significant saving of
computation. On large-scale systems, this has not been investigated in the
literature so far.

Example 9.5

Compute the Yint for Example 7.1, using the classical model for the fault
at bus 7 followed clearing lines of 7-5. Using the PEBS method, compute
ter. Use f1(6) - 0 as the criterion for PEBS crossing.

Y;,¢ with fault at bus 7 (faulted system)

In the Y;ﬁfgw matrix of Example 7.6, since V7 = 0, we delete the row and

column corresponding to bus 7. Then eliminate all buses except the internal
nodes 10, 11, and 12. The result is

. 0.6567 — 73.8159 0.0000 — 70.0000 0.0701 + 50.6306
Yint = | 0.0000 — 50.0000 0.0000 — j5.4855 0.0000 — 50.0000
0.0701 4 50.6306 0.0000 — 70.0000 0.1740 — 52.7959
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Y: . with lines 7-5 cleared (postfault system)

int

Ybus = Yy is first computed with lines 7-5 removed, and the rest of the
steps are as in Example 7.6. Buses 1 to 9 are eliminated, resulting in

1.1386 — 2.2966: 0.1290 4 0.7064: 0.1824 4- 1.0637¢
0.1290 + 0.70647 0.3744 — 2.0151¢ 0.1921 + 1.2067%
0.1824 4 1.0637¢ 0.1921 + 1.2067¢ 0.2691 — 2.35164¢

Yint =
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The initial rotor angles are d1(0) = 0.0396 rad, d2(0) = 0.344 rad and
93(0) = 0.23 rad. The COA is calculated as d, = MiZf’ 0:(0) =
0.116 rad, where My = My + My + Ms. Hence, we have 91( ) =061(0 ) do =
—0.0764 rad, 02(0) = 02(0) — &, = 0.229 rad, and 63(0) = 03(0) — 0, =
0.114 rad, ©1(0) = @2(0) = w3(0) = 0. The postfault s.e.p is calculated as

i = —0.1782, 65 = 0.5309, 05 = 0.2711. The steps in computing t., are
given below.

1. From the entries in Yj,; for faulted and postfault systems, the appro-
priate Cj; and D;;’s are calculated to put the equations in the form of
(9.21) and (9.22).

2. V(0,w) is given by Vi g+ Vpg(0), where Vg = %MZJJ? and Vpp(6) is
given by (9.53). The path-integral term is evaluated as in (9.51), with
I;;(0) = 0, and the term (9.55) is added to Vpg(6).

3. The faulted system corresponding to (9.21) is integrated and at each
time step V (0, ©) as well as Vpg(f)) are computed. Also the dot product
£T(0) - 6 is monitored. The plots of V(0,®) and VpE(H) are shown in
Figure 9.11. Figure 9.12 shows the plot of f7(6) -6

4. VERX = 1.0377 is reached at approximately 0.36 sec. Note from Fig-
ure 9.12 that the zero crossing of f7(#)-6 occurs at approximately the
same time.

5. From the graph for V(0,®), t,, = 0.179 sec when V(6,0) = 1.0377. O

9.7 The Boundary Controlling u.e.p (BCU) Method

This method [98] provided another breakthrough in applying energy function
methods to stability analysis after the work of Athay et al. [97], which origi-
nally proposed the controlling u.e.p method. The equations of the postfault
system (9.22) can be put in the state-space form as

0 = &
Mw; = fi(0)
OVip(0)
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Figure 9.11: Total and potential energies: (a) V(6,) (dashed line); (b)
Vpp(6) (solid line)

Now

= 0, (9.59)

Hence, V(0,®), is a valid energy function.
The equilibrium points of (9.58) lie on the subspace 0, @ such that e R™, & =
0. In the previous section, we have qualitatively characterized the PEBS as
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3.5

PEBS Function
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Figure 9.12: The monitoring of the PEBS crossing by f7(6) - 0

the hypersurfaces connecting the u.e.p’s. We make it somewhat more precise
now. Consider the gradient system

. —0Vpp(0)

0 = —=. 9.60

20 (9.60)

Note that the gradient system has dimension m, which is half the order of
the system (9.58). It has been shown by Chiang et al. [98] that the region
of attraction of (9.58) is the union of the stable manifolds of u.e.p’s lying
on the stability boundary. If this region of attraction is projected onto the
angle space, it can be characterized by

DAB) = U W) (9.61)

where 9;‘1’ is an u.e.p on the stability boundary in the angle space. The stable
manifold W#*(01°) of 9% is defined as the set of trajectories that converge
to 0% as t — +o0o. Since the gradient of Vpg(f) is a vector orthogonal to
the level surfaces Vpg () = constant in the direction of increased values of
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Vpp(0), the PEBS in the direction of decreasing values of Vpg(f) can be
described by the differential equations 6 = —8‘/’57’(3(0) = f(#). Hence, when
the fault-on trajectory reaches the PEBS at 8 = #* corresponding to ¢t = t*,

we can integrate the set of equations for ¢t > t* as
0 = f(O), 0t =6" (9.62)

where f(f) pertains to the postfault system. This will take 6(¢) along the
PEBS to the saddle points (u.e.p’s Uy or Us in Figure 9.10 depending on
6*). The integration of (9.62) requires very small time steps since it is
“stiff.” Hence, we stop the integration until ||f(#)] is minimum. At this
point, let 6 = Ozpp. If we need the exact 6, we can solve for f(f) = 0 in
(9.23) using O3pp as an initial guess. The BCU method is now explained in
an algorithmic manner.

Algorithm

1. For a given contingency that involves either line switching or load /generation
change, compute the postdisturbance s.e.p. 6° as follows.
The s.e.p and u.e.p’s are solutions of the real power equations

M;
fi(6) = P, —P,(0)— Poor(6) =0 i=1,...,m.(9.63)
M
0,, = A}—; ;i_ll M;0;, it is sufficient to solve for
fil0) = 0 i=1,...,m—1 (9.64)

with 6,, being substituted in (9.64) in terms of 61, ..., 6,,—1. Generally,
the s.e.p. 6° is close to 0° the prefault e.p. Hence, using 6° as the
starting point, (9.64) can be solved using the Newton-Raphson method.

2. Next, compute the controlling u.e.p. 8 as follows:

(a) Integrate the faulted system (9.21) and compute V (0, 0) = Vg p(@)+
Vpp(6) given in (9.52) at each time step. As in the PEBS algo-
rithm of the previous section, determine when the PEBS is crossed
at # = 0* corresponding to t = t*. This is best done by finding
when f7(6) - (0 — 6°) = 0.
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(b) After the PEBS is crossed, the faulted swing equations are no
longer integrated. Instead, the gradient system (9.62) of the post-
fault system is used. This is a reduced-order system in that only
the 6 dynamics are considered as explained earlier, i.e., for t > t*

0 = f(0),0(t") =0" (9.65)

Equation (9.65) is integrated while looking for a minimum of

STAO) ] (9.66)
i=1

At the first minimum of the norm given by (9.66), 6 = 0app and
VpE(Ggpp) V.- is a good approximation to the critical energy
of the system. The value of 03 app 18 almost the relevant or the
controlling u.e.p.

(c) The exact u.e.p can be obtained by solving f(#) = 0 and using
Oipp as a starting point to arrive at 6*. Note that since f (9)
is nonlinear, some type of minimization routine must be used to
arrive at 6“. Generally, ngp is so close to 6" that it makes very
little difference in the value of V., whether 6% or ngp is used.

3. V., is approximated as V., = V(0",0) = Vpgr(6“).
Because of the path-dependent integral term in Vpg, this compu-
tation also involves approximation. Unlike computing Vpg(f) from
the faulted trajectory where # was known, here we do not know the
trajectory from the full system. Hence, an approximation has to be
used. The most convenient one is the straight-line path of integration.
Vpe(6™) is evaluated as [97]:

m mel m
Vep(0) = =) PO —07) - >, [ ij (COSH — cos 92‘81‘)
=1 i=1 j=i+1
(6 — 67) + ( 0“ 6%) o
(68— 63) — 0;5 D;; (sin6;; — sin Hij)] . (9.67)

We derive the third term of (9.67) as follows. Assume a ray from 6} to
0% and then any point on the ray is 0; = 67 + p(6* — 65)(0 < p < 1).
Thus, d(0; + 0;) = dp(0} — 07 + 07 — 07). The path-dependent term
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Va(6) in (9.49) is now evaluated at 0% as Vy(0) = 7" disiv Lij-

1
Ly = 107 =09+ =) | Dy cosl(0; ~6})

(07 —07) — (0 —07)ldp
(6% — 6%) + (6% — 69) S
= (0% —07) — (921 — eé)Dij [Sln (02. _ gj)

(6 —07) — (67— 9)) |

(0f — 07) + (67 — 65) e
= S Qj)Dij [Sln 0;; — sin Gij} . (9.68)

p=1
p=0

4. To compute t.., we go back to the already-computed value of V (0,0)
from the fault-on trajectory in the case of a fault, or the postdistur-
bance trajectory in the case of load/generation change, and find the
time when V(0,&0) = V.. In the case of a fault this time instant
gives t.. and the system is stable if the fault is set to clear at a time
t < ter. In the case of load/generation change, the system is stable if
V(0,0) < Vg, for all t.

Example 9.6

Compute t.. using the BCU method for Example 9.5. Use egpp instead of
the exact controlling u.e.p 8% to compute V.
The PEBS crossing is computed as in Example 9.5. t* is obtained as
0.3445 sec and 07 = —0.7290 rad, 65 = 2.3988 rad and 65 = 0.6248 rad.
The gradient system for ¢ > t* is given by

0 = fO), ot = 6

where f(0) is given by (9.63) with the parameters C;; and D;; pertaining
to the postfault system. The equations are now integrated until || f(0)| =

3 1£:(6) | is minimum (Figure 9.13). The minimum obtained is || f|| =
0.985. At this point, 83pp; = —0.7451 rad, Oappe = 2.3909 rad, and ngp?) =
0.6487 rad. With this, Vi, = Vpg(0app) is calculated using (9.67) as 1.0815.
Hence, from the fault-on trajectory in Figure 9.11, t., is between 0.180 and
0.184 sec. In this case, t.. by both the PEBS and BCU method is about the
same. The effect of loading, as well as the closed-form approximation to the
path-dependent integral on ¢, is discussed in [120]. O
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Figure 9.13: Plot || f(#) || as a function of time in the gradient system

9.8 Structure-Preserving Energy Functions

The structure-preserving model (7.201)—(7.204) is reproduced below.

0; = w;—ws (9.69)
n+m
Miw; = Ty — Y, ViV;Byjsin(6; — 6;)
7j=1
i=n+1,....,n+m (9.70)
n+m
Pri(Vi) = Y VViBijsin(0; — ;) i=1,...,n (9.71)
7j=1
n+m
QL(VZ) = - Z VZV]BZ) COS(@Z' — Gj) 1= 1, ey (9.72)
j=1

Note that the rotor angles J;’s are also denoted as 6;’s. Here, we are assuming
constant real power loads so that Pr;(V;) = Pr;, and reactive power as
nonlinear voltage-dependent loads. If the angles are referred to the COI
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0p = MLT Yoty M;6;, then the angles referenced to COI become 0~Z = 0; —

do (i=1,...,n+m). It can be shown [94] that the energy function is given
by
V(@,0,V) = Vkp(@)+Vei(0,V) + Vea(6) (9.73)
where
- 1SN, o
VKE(O.)) = 5 ;M,wl
B n—+m B 5 n V; (V
Vo (0,V) = = > Tars(0i—65)+ > LL‘Z/( ’)dVi (9.74)
i=n+1 =17V ‘
1 & s
5 S BaVE - (V) (9.75)

n+m—1 n+m B B
— Y > Bi(ViVjcostij — ViV cos ) (9.76)
i=1 j=i+l

Vald) = — 3 Puili— ). (0.7
1

This energy function has been used for both transient-stability and voltage-
stability analyses. In the second case, only the PE term is used, along with
the concepts of high- and low-power flow solutions [117].

9.9 Conclusion

In this chapter, we have discussed in detail the transient energy function
method for angle stability. The basis of the method has been shown to be
the famous Lyapunov’s direct method [118]. The equivalence of the energy
function to the equal-area criterion has been shown for the single-machine
case. For the multimachine case, the PEBS and the BCU have been ex-
plained in detail. The TEF method can be used to act as a filter to screen
out contingencies in a dynamic security assessment framework [119]. The
BCU method is known to be sensitive with respect to the PEBS crossing 6*.
The method can be made more robust by tracking the stable manifold to
the controlling u.e.p using what is called “shadowing” method [121]. Finally,
the structure-preserving energy function has been derived. The TEF area is
an active area of research.
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9.10 Problems

9.1 A single machine connected to an infinite bus has the following faulted
and postfault equations.

Faulted

. 33 2 — . 1 0 < t < t .

d*s .
0.0133— = 0.91 —3.24sind t > tep.
dt?

The prefault system is the same as the postfault system.

(a) Find V(§,w) and V, using the u.e.p formulation.

(b) Explain stability test of (a) using the equal-area criterion. Sketch
the areas Ay, As, Ag.

(c) Find t¢, using V.
(d) Find ¢ using PEBS method.

9.2 For the 3-machine system of Example 7.1, a fault occurs at bus 7 and
is cleared at t.; with no line switching.

(a) Based on prefault load flow and using the classical model, compute
the voltages behind transient reactances and the rotor angles at
t=0".

(b) Find Yt for the faulted and the postfault cases.

(c) Write the energy function V(6,®), assuming G;; = 0(i # j).

(d) Write the faulted equations in COI notation, together with the
initial conditions.

(e) Compute t., using the PEBS method.
(f) Repeat (c), (d), and (e), assuming G;; # 0.

9.3 For Pioblem 8.1 using the classical model, compute ?int for prefault
and Y for a fault at bus 112.
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9.4 Compute for Problem 8.1 the voltages behind transient reactances and
the rotor angles at t =07.

(a) Using results of Problem 9.3, write the energy function V(0,).
Assume that the fault at bus 112 is self-clearing.

(b) Using the PEBS method, compute t,.
9.5 Use the BCU method to compute ¢, for Problems 9.2 and 9.4. Do this

first for G;; = 0(i # j) and then for Gj; # 0. Compare the results
with the PEBS method.



Appendix A

Integral Manifolds for Model
Reduction

A.1 Manifolds and Integral Manifolds

The term “manifold” in this chapter refers to a functional relationship be-
tween variables. For example, a manifold for z as a function of x is simply
another term for the expression

z = h(x) (A.1)

When z is a scalar, the manifold is a line when plotted in the z,x space.
When z is two-dimensional, the manifold is a surface that might appear as
in Figure A.1

To define an integral manifold, we have to introduce a multidimensional
dynamic model of the form

dz o

- fwo) wo) = = (A2)
% = g(x,2) z(0) = 2°. (A.3)

An integral manifold for z as a function of x is a manifold
z = h(x) (A.4)

which satisfies the differential equation for z. Thus, h(x) is an integral
manifold of (A.2)-(A.3) if it satisfies

%f(w,h) = g(x,h). (A.5)

315
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X1
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\ — X9

NN—

Figure A.1: Geometrical interpretation of a manifold

If the initial conditions on x and z lie on the manifold (z° = h(z°)), then
the integral manifold is an exact solution of the differential equation (A.3),
and the following reduced-order model is exact:

dx o
o = f(z, h(zx)) z(o) = z°. (A.6)
A.2 Integral Manifolds for Linear Systems

The concept of integral manifolds is illustrated in this section through a
series of examples. Consider the oversimplified system

Z—f = —zr+z z(o) = z° (A.7)
% = —10z+10 z(o) = 2° (A.8)

We say that z is predominantly fast because of the 10 multiplying the right
side. We say that x is predominantly slow because it has only 1 multiply-
ing the right side. For comparison later, let’s solve for the exact response.
Because it is a linear time-invariant system, the solution will be of the form

z(t) = M4 eM +ey (A.9)
2(t) = g™t 4+ e5e™ 4 g (A.10)
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where A1 and Ao are the two eigenvalues. These are found from the system-
state matrix as follows:

dx
& -1 1 T 0
dat | —
l%]_lo —10Hz + 101' (A-11)
—_——
A
The eigenvalues are the solutions of
: A+ —1 B
determinant [\ — A] = ‘ 0 A+10 ‘ =0 (A.12)

or (A\+1)(A+10)—0 = 0. The roots are Ay = —1, Ay = —10. The constants
c3 and cg are the steady-state solution

0=—oss+ 2ss _ _
0 = —10z4 + 10 }Z“ =l s =1 (A.13)
SO
r = el ee 041 (A.14)
cpe 4+ ese 100 41, (A.15)
The other constants are found from the initial conditions:
(o) = c1+ca+1l=2a° (A.16)
d
o = —er—10c = —a®+2° (A17)
z2(0) = caa+es+1=2° (A.18)
d
d—j lo = —c1—10c5 = —102° + 10. (A.19)
Solving
2°—10 2°—1
= z2° =— A.20
c1 T+ 9 C2 9 )
3 = 2°=1 =0 (A.21)
the exact solution is
1 ° °—1
r=|2°— 10 + z et 2 e 10 41, (A.22)
9 9 9
~~~ N——
small if 2o small if -0

is not large is not large
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If 2° is not large, the major part of x is slow. The fast variation of z
contributes only small amounts to x.

To see how we can develop a reduced-order model, look for an integral
manifold of the form

z = hx+c (A.23)

where h and ¢ are constants. Substituting into the z differential equation,

d
hd—f = —10(ha + ¢) + 10 (A.24)

or
h(—z + hx 4+ ¢) = —10hxz — 10c + 10. (A.25)

One solution is A = 0,c¢ = 1. This means that z = 1 is an exact integral
manifold for the z variable. That is, if z = 1 at any time, then z remains
equal to one for all time. Or, more properly stated: “If the initial conditions
start on the manifold, then the system remains on the manifold.” If this
integral manifold is substituted into the = differential equation, the reduced-
order model (valid only for z° = 1) is

dz
dt

which clearly exhibits the exact slow eigenvalue and the following solution

= —r+1 z(0) = x° (A.26)

r = (z°—1e '+ 1. (A.27)

Compare this to the exact solution of (A.22). If z° is equal to 1.0, then
(A.26) gives the exact response of z for any z°. If z° is not equal to 1.0,
then (A.26) will not give the exact response of x. For this case, we define
the off-manifold variable 7 as

n 2 -1 (A.28)
which has the dynamics
d
d—?z —10n n(o) = 2° — 1. (A.29)

Note that n = 0 is an exact integral manifold because if = 0 at any time,
n = 0 for all time. The exact solution, when 7(0) # 0, is

n(t) = (2°—1)e 1% (A.30)
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The integral manifold plus off-manifold solution for z as a function of x and
tis

z o= 14 (2°—1)e 1% (A.31)
This gives the exact reduced-order model (for any z°)

dx

o = ¢ + 14 (22— 1)e 10 z(o) = x°. (A.32)

While this may have been obvious from the beginning, the steps that led to
this result are important for cases where it is not obvious.

The fast time-varying input into this slow subsystem is somewhat unde-
sirable. An interesting approximation can be made to eliminate this term as
follows. Since the time-varying term decays very rapidly (e=1%), this term
enters the slow differential equation almost as an impulse. It is z°—1 at time
zero and essentially zero for ¢t > 0. Using the following impulse identity,

Imp(t) N le_i. (A.33)

a— 0 a

Equation (A.32) can be approximated by

dx (z°—1)

Imp(t) (o) =2° (A.34)

This impulse can be eliminated by recognizing that its integral can be in-
cluded in the initial condition on x

o) = 2°+ /Ot(—x—i—l)df—k /Ot (Zolg Yimp()di  (A.35)

or

2°—1
10

t
o) = 2°+ 4 / (—z + 1)di. (A.36)
o
This gives the approximate reduced-order model using the exact integral
manifold for z and accounts for the z initial condition off-manifold dynamics
through a revised initial condition on z:
dx (z°—1)

—~—-x+1 z(0) = z° +
7 (0)

(A.37)
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To see the impact of this approximation, consider the example in which
x° =1 and z° = 0. The exact response of z is the solution of

d
(a) d—f =—z+1—e1  2z(0)=1.0. (A.38)
The approximate response of x using only the exact integral manifold for z

is the solution of

d
(b) d_”t” ~-z+1 (o) = 10. (A.39)
The improved approximate response of x accounting for the off-manifold
dynamics is the solution of
dx

(¢) Pl +1  z(0) =0.9. (A.40)

A comparison of these solutions is given in Figure A.2. It is important

1.0 1.0 1.0
0.5 05 0.5
1 | |
00 1.0 t 00 1.0 t 00 1.0 t

(a) (b) ©
Figure A.2: Comparison of exact and approximate solutions

to observe that the basic phenomenon was captured by the slow manifold
of (b). The correction for the fast initial condition was a second-order effect
approximated fairly well.

Before leaving this example, we return to (A.25) and observe that another
integral manifold solution is

h=-9, ¢=10 (A.41)
which gives another exact integral manifold,
z = —9z+10. (A.42)

If this solution is used in the original differential equation for z, the reduced-
order model is
dx

il —10xz +10 z(0) = z°. (A.43)
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The solution of this is
r = (z°—1)e 0 1. (A.44)

Compare this to the exact solution of (A.22). It is exact if 2¢ = —92° + 10.
This means it is exact for z° = 1,2° = 1. But, if 2° = 0.5, 2° = 1 (not
significantly different), there will be a large error in this reduced-order model,
which is good only for a very limited range of initial conditions.

We now extend this concept to the more general case with coupling in
both equations as:

dx

- _ A4
o T+ z (A.45)
dz

i —10z — 10z. (A.46)

As before, we say that z is predominantly fast and z is predominantly slow.
This is due to the 10 multiplying the right side of the z differential equation.
The eigenvalues of this system are found from the state matrix

A = [ __110 _110 ] (A.47)
N —A| = ’ Afol Afm ’ — (A 1)(A+10) + 10 = 0. (A48)
The roots are
A =-23 Ag = 8.7 (A.49)
so the exact solution is
z = cre 23 48T 4 gy (A.50)
= e 23 4 ese 8T g (A.51)
The steady-state values of x and z are
Tss =3 =0 246 =cg=0. (A.52)
Focusing on z, let’s solve for ¢; and cs.
z(o) = ca+ecpg=2a° (A.53)
Z—f lo —2.3¢; — 8.7cg = —x° + 2°. (A.54)
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Solving
T7.7x° + 2° 1.32° + 2°
Cc1 = T, Cy = —T (A55)
so:
T, 2° ~2.3 L3 , 2° —8.7
== — o — — " (A.56
x 51’ + Qf_l, € ki + éf_l, e ( )
small if zo small if -0
is not large is not large

As before, if z° is not large, the x response is dominated by the slow com-
ponent. If we are interested only in capturing the mode with eigenvalue
-2.3, we propose that this mode is associated with the state x, and seek to
eliminate z from (A.45)—(A.46) through an integral manifold of the general
linear form

z = hx+c (A.57)
Substituting into (A.46) (and using (A.45)) gives
h(—z + hx+c¢) = —10x — 10hz — 10c. (A.58)
For arbitrary x, this has the solutions

c =0 h=-13 (A.59)
c =0 —— (A.60)

Thus, there are two integral manifolds for z as before:

IM1: z=-13z (A.61)
IM?2: z=-77Tx. (A.62)

Substitution of IM 1 into (A.45) gives

dx
— =-2. A.
= 3 (A.63)
and substitution of IM 2 into (A.45) gives the faster subsystem
d
C 87 (A.64)

dt
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This second result is somewhat disturbing, since we had originally proposed
that the variable & was associated with the -2.3 mode. Several important
points are illustrated here. First, integral manifolds can be used to decouple
systems and find eigenvalues. Second, integral manifolds are not unique
(one for each eigenvalue, it appears!). Third, the choice of the integral
manifold determines the phenomena retained in the reduced-order model.
To understand more about this technique, consider the same system with
the introduction of the small parameter € (1/10 in the above example), and
the inclusion of initial conditions

de = —xr+z z(o) = z° (A.65)
dt

dz

= _p— = 2° A.
7 x—z z(0) =z (A.66)

Again we seek a linear manifold
z = h(e)x+ c(e) (A.67)

where we presume that h and ¢ would normally depend on the parameter e.
Substitution of (A.67) into (A.65)—(A.66) gives

eh(e)(—x + h(e)x +c(e)) = —x— h(e)x — c(e). (A.68)

Again, for arbitrary x, the solutions are

c(e) = 0, h(e) = —12_66 - i\/(l —€)2—4e, h(o)=-1 (A.69)
—2% ( de, h(o)

oe) = 0, h(e)=——C L Jaep_ — —oo. (A70)

N 2e
For positive € < 1, these solutions exist only for

0<e<0.1715. (A.71)

This makes sense, since the original system has complex eigenvalues for e
less than 1 but greater than 0.1715. It would be impossible to capture a
complex mode from a single-state equation.

This simple example illustrates that integral manifolds may not exist and
may not be unique. If we are interested in the “slow mode,” which we propose
is associated with the variable z, we need a systematic way to compute the
correct integral manifold. If z is infinitely fast (e = 0), the integral manifold
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of interest is 2 = —x(h = —1). When € is near zero, we propose that the
integral manifold of interest should be near -1. To systematically compute
h for e near zero, we expand h(e) in a power series in € as

h(e) = ho+ehy +eha+... (A.72)

and return to the example by substituting into (A.66) and (A.67) (using
c(e) =0)

e(ho + €hy+ € ho+..)(—x + (ho + €hy + €2hy + .. )x)

= —x— (ho +ehy +hy +.. ). (A.73)
For arbitrary x, we solve for h,, h1, hs, ... by equating coefficients of powers
of e
€: 0=-1—hyorh,=-1 (A.74)
el': ho(=14hy)=—hjorh; =h,—h?=-2 (A.75)
etc.

Stopping with these terms,

hie) ~ —1-—2e. (A.76)
This approximates the exact integral manifold of (A.65)—(A.66) as

z = —(142¢)x. (A.77)

Using this in (A.65) gives the approximate reduced-order model (valid when
the initial conditions satisfy z° = h(€)x°)

dx

o —(2 + 2¢)x z(0) = x°. (A.78)

This model could be improved to any degree of accuracy by including addi-
tional terms of h(e). Since these terms were computed from a power series
near the integral manifold of interest (slow manifold), the correct mode has
been captured. Note that it is necessary to consider only the off-manifold
dynamics due to the initial conditions if the reduced order model is going to
be used in a simulation. If only eigenvalues are of interest, the off-manifold
dynamics due to initial conditions are not relevant. For ¢ = 0.1, as in the
previous example, the slow eigenvalue (-2.3) is approximated in (A.78) by
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-2.2. As a warning, it is important to note that in this example the integral
manifold always exists when € is actually zero. When e is small but not zero,
the infinite series of (A.72) can always be computed, but its convergence
and, hence, its validity depend on the size of the actual e. In this example,
we would expect that this series converges only when ¢ is less than 0.1715.
Thus, while terms of the integral manifold series can be computed for any
€, it should be used only when e is less than 0.1715.

While computation of the integral manifold is the primary task in model
reduction, it may not make sense to find a good approximation and then
ignore the possibility that z does not start on the manifold (2° # h(e)z?°).
As in the earlier example, it is possible to approximate this impact on x by
computing the off-manifold correction. To do this, we define the off-manifold
variable as (with c(e) = 0)

z—h(e)x (A.79)
which has dynamics (recalling (A.68) with c(e) = 0)

dn

€ = —(1+€eh(e))n n(o) = 2% — h(e)x®. (A.80)

Clearly, n = 0 is also an integral manifold because if n = 0 at any time,

then n = 0 for all time. The exact off-manifold dynamics are the solution of
(A.80):

_ 1+eh(e) )t

n(t) = (2°—h(e)z®)el"—< (A.81)
If h(e) is known exactly, then the exact slow subsystem is

dx
dt

1+eh(e) )t

= (1= h(©)z + (2 — h(e)a?)e
z(o) = z°. (A.82)

As before, this fast input can be approximated by an impulse and eliminated
by modification of the initial condition to obtain

dx
dt

20) = x+(#h(6)) (° — h(e)®) (A.83)

—(1 = h(e)x
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Clearly, if 2° = h(e)x® (on the slow manifold), this result is exact when h(e)
is exact. In our example, h(e) was never found exactly. Using the approx-
imation h(e) ~ —1 — 2¢ with ¢ = 1/10 gives the following slow subsystem
approximate model (approximate for two reasons: h(e) is not exact and the
off-manifold dynamics are not exact):

d 1
d_f ~—22x  z(o) = 00

o 10 o

The basic result of all this is summarized as follows. Consider a linear
system in standard two-time-scale form

dx

— = A B A.

o T+ Bz (A.85)
dz

where A, B, C, D are of order 1 (not big) and D is nonsingular (D! exists).
A first-order approximation of the slow dynamics of x is obtained by
simply setting ¢ = 0.

dz
e Az + Bz (A.87)

0 = Cx+ Dz (A.88)
which gives the first approximation of the slow manifold (h,)
z = —D7Czx (A.89)

and the first approximation of the slow dynamics of x

Z—f = (A-BD7'(O)a. (A.90)
Using this approximate model will introduce two errors. One is due to the
fact that the integral manifold is not exact (h, is only the largest part of
h(e)). The second error is due to the fact that the initial condition on z may
not satisfy the integral manifold.

It can be shown that if the initial condition on z is not big, then the
total error of these two approximations is small. The term “not big” means
that z° should be on the order of magnitude of 1 or less. The term “small”
means on the order of magnitude of €. References [66] and [67] discuss this
in detail.
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In most cases, the first-order approximation of the slow manifold coin-
cides exactly with the steady-state relationship between z and x in the z
differential equation, because the result of setting € to zero is the same as
the result of setting % to zero. There is, however, a profound theoretical
difference. Setting % = 0 implies z = constant. This would be contradicted
by the change of z when x changes (z = h,z). Setting € = 0 does not im-
ply z = constant, and thus is not contradicted by the change of z when x
changes.

A.3 Integral Manifolds for Nonlinear Systems

While there are many reduction techniques that can be applied to linear
systems, the primary advantage of the integral manifold approach is its
straightforward extension to nonlinear systems. We begin by considering
the general form

dx o
= fwe) alo)=z (A91)
L= @) o) =2 (A.92)

To analyze the dynamics of x, it is necessary to also compute the dynamics
of z. A reduced-order model involving only x requires the elimination of z
from (A.91). An integral manifold for z as a function of x has the form

z = h(x) (A.93)

and must satisfy (A.92)
oh
%f(iﬂah) = g(z,h). (A.94)

While, in general, it is very difficult to find such an integral manifold, there
are several very important cases in which A can be either found exactly or
approximated to any degree of accuracy. We begin with a generic example,
which closely resembles the single synchronous machine connected to an
infinite bus with stator transients

diL'l
- -l A
0t T2 (A.95)
dx

2 = f(xl7x2721722) (A96)

dt
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d
% = —021 + 2229 +V sin x4 (A.97)
% = —029 —T9z1 + V cos z1. (A.98)

We suppose that only x; and zo are of interest, and look for an integral
manifold of the form

zZ21 = hl(l‘l,l'g) (A.99)
zZ9 = hg(l‘l,l'g). (A.lOO)

This two-dimensional integral manifold must satisfy

Ohy Ohy B
a—wl(fﬂz -1)+ a—xzf(xlawmhl,hz) =
—ohy +a9hs +V sin x4 (A.101)
Ohsy Ohs
T2 1) 22 —
81’1(x2 )+ axzf(xlvl'%hlvh@)
—ohg —ax9h1 +V cos x7. (A.102)

These partial differential equations can be solved by first assuming that hq
and ho are independent of xo and then equating coefficients of xs to give

Ohy Ohy .
S R A R T 7 Al
Fre 2, 9, ohy sin o1 (A.103)
Ohs Ohs

C = _hy. —2 =ghy — ) A.104
e 1, . ochy —V cos 23 (A.104)

Eliminating the partials gives the solution

hy = V cos  cos(x —x7) (A.105)
he = V cos o sin(x —z1) (A.106)

where tan o= o. Thus, if the initial conditions on z1, 23, and xy satisfy
(A.105)—(A.106), then substitution of (A.105)—(A.106) into (A.96) gives an
exact reduced-order model. When the initial conditions on z1, 22, and z1 do
not satisfy (A.105)—(A.106), it is necessary to introduce the “off-manifold”
variables

1>

z1 —V cos o cos(x —x1) (A.107)
zg —V cos o sin(x —zp). (A.108)

m

1>

72
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These off-manifold variables have the following dynamics:

d
% = —on +z21m (A.109)
d
d”f = —ony — w911 (A.110)

This system has the explicit solution

m = cre tcos(t+ a1 — ca) (A.111)
np = —cre % sin(t + x1 — ¢2) (A.112)

where ¢; and ¢y are found from initial conditions by solving
2{ =V cos xx cos(x —zf) = c¢1 cos(z] — c2) (A.113)
z5 —V cos x sin(x —z7) = —c; sin(z] — c2). (A.114)

This result leads to an exact reduced-order model in 1 and x9 by using the
following in (A.96):

ot

cos(t+x1 —c2) (A.115)
29 = V cosocsin(oc —x1) — cre” % sin(t + 21 —c).  (A.116)

z1 = V cos o cos(ox —x1) + cre”

Such exact integral manifolds and exact off-manifold solutions are rare in
dynamic systems. The synchronous machine stands out as a unique device
with this property [64].

A very broad class of systems in which integral manifolds can often be
found or approximated to any degree of accuracy is the class of two-time-
scale systems of the form

W= Jw (o) =2 (A117)
e% = g(x,2)z(0) = 2°. (A.118)

These systems are called two-time scales because when € is small, the z
variables are predominantly fast and the x variables are predominantly slow.
This is clear because the derivative of z with respect to time is proportional
to 1/e, which is large for small €. As in the linear case of the last section,
we propose an integral manifold for z as a function of x and e:

z = h(z,e). (A.119)
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We assume that e is sufficiently small so that the manifold can be expressed
as a power series in e:

h(x,€) = ho(z) + ehi(x) + ha(z) + .. .. (A.120)
Substitution into (A.119) and then (A.118) gives

Oh, 0hy B
€ ( o + oy + .. ) f(z,h) = g(x,h). (A.121)
Expanding f and g about € = 0,
of
flz,h) = f(x,ho)+ €5s l.=h, P1 ... (A.122)
0
glx,h) = gz, hy) + ea—g lo=h, h1+ ... (A.123)
the partial differential equation to be solved is
Oh,  Om of _
E(ax +€%+) (f(l',ho)—FE& |Z:h0 h1—|—) =
99
g(x, ho) + €, l.=h, P1+ ... (A.124)

Equating coefficients of powers of € produces a set of algebraic equations to
be solved for hy, hi,hg .. .:

e’ 0=g(z, ho) (A.125)
oh 0g

1. 7o) _ 99

€ O f(CC,hO) - Oz ’z:ho hl (A.126)
etc.

Clearly, the most important equation is (A.125), which requires the solution
of the nonlinear equation for h,. Once this is found, the solution for hq
simply requires nonsingular dg/0z. Normally, if (A.125) can be solved, the
nonsingularity of dg/0z follows.

As in the linear case, the use of an integral manifold in a reduced-order
model can give exact results only if it is found exactly and if the initial
conditions start on it. If the initial conditions do not start on the manifold
(do not satisfy (A.119)), an error will be introduced. To eliminate this
error, it is necessary to compute the off-manifold dynamics. This is done by
introducing the off-manifold variables

n 2 z—h(ze) (A.127)
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with the following dynamics

dn oh
e = 9@nt+h) —ex flz,n+h) (A.128)
and the initial condition
n(o) = z°%—h(ze). (A.129)

These off-manifold dynamics normally are difficult to compute because they
require . As a first approximation, (A.128) could be solved using x as a con-
stant equal to its initial condition. This is a reasonably good approximation
because the off-manifold dynamics should decay (if they are stable) before x
changes significantly. A geometric illustration of the integral manifold and
the off-manifold dynamics is shown in Figure A.3. If z starts off the surface

e

X
X2
Figure A.3: Off-manifold dynamics

z = h(z,€), it should decay rapidly to the surface (if it is stable), as shown
in the solid line. The dotted line shows the trajectory of z if off-manifold
dynamics are neglected and z is forced to begin on the surface.

It can be shown that, if z is stable, using h, as an approximation for A
and neglecting off-manifold dynamics only introduces “order €” error into the
slow variable x response. If further accuracy is desired and h is approximated
by h, + €hq, there will still be “order €” error if the off-manifold dynamics
are neglected. To reduce the error to “order €2.” it is necessary to include
hy and approximate 7 to order €2. This can be done by approximating the
off-manifold dynamics as

dn

0 oho ,,
ey X 9@ 0+ o+ eh) — e2 (2% + ho) (A.130)
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with
1n(0) = 2° = ho(z°) — €ha1(z?) (A.131)

and hy, hy, Oh,/0z evaluated at © = x°. Additional illustrations of integral
manifolds and off-manifold dynamics are given in [63]-[69].
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